Yes, I understand, but in the book Arnold first defines an action:
Let M be a group and M a set. We say that an action of the group G on the set M is defined if to each element g of G there corresponds a transformation Tg : M→M of the set M, to the product and inverse elements corresponds...
But if T takes m to m, how is the same which T takes g of G(or gh of G) to S(M)=group of all bijective transformations of M.
And say Arnold's books are ""pedagogic".
In Arnold's book, ordinary differential equations 3rd. WHY Arnold say Tg:M→M instead of Tg:G→S(M) for transformations Tfg=Tf Tg,
Tg^-1=(Tg)^-1.
Let M be a group and M a set. We say that an action of the group G on the set M is defined if to each element g of G there corresponds a...
Thanks your explanation was so clear , the reason of the post is If there exists the different between the action of a group and the action of a element g of a group G for example. The definition of ARTIN's book was nothing precise.
hi everyone, I'm electrical engineer student and i like a lot arnold's book of ordinary differential equations (3rd), but i have a gap about how defines action group for a group and from an element of the group.For example Artin's algebra book get another definition also Vinberg's algebra book...