Recent content by mdmman

  1. M

    Normalizing Wave Function of A Ring

    \| \exp(\imath n \theta) \|^2 = 1 Man, I can't believe I missed that! 1=|A_{n}|^2\int_0^{2\pi} \|\exp(\imath n \theta)\|^2 d\theta 1=|A_{n}|^2\int_0^{2\pi} 1 d\theta 1=|A_{n}|^2[\theta]_0^{2\pi} 1=|A_{n}|^2*2\pi A_{n}=\frac{1}{\sqrt{2\pi}} This is the...
  2. M

    Normalizing Wave Function of A Ring

    \| \exp(\imath n \theta) \|^2 = \| \exp(2\imath n \theta) \| = \|cos(2n\theta)+sin(2n\theta)\imath \| correct?
  3. M

    Normalizing Wave Function of A Ring

    Homework Statement \psi_{n}(\theta)=A_{n} \exp(\imath n \theta) where n is an integer Calculate the factor A_{n} if the wave function is normalized between \theta = 0 and \theta = 2\pi. Homework Equations NA The Attempt at a Solution 1=\int_0^{2\pi} |\psi_{n}(\theta)|^2...
Back
Top