How can I define the rank of that matrix that is always one ? Then I can get on from this forum from
https://www.physicsforums.com/showthread.php?t=682216
Sorry but i still don't get it. What is the eigenvector in the second part of the equation? Could you provide the solution beyond that first step! Thank you !
Hey guys if i have a vector x=[x1,x2, ... xn]
what are the eigenvectors and eigenvalues of X^T*X ?
I know that i get a n by n symmetric matrix with it's diagonal entries in
the form of Ʃ xii^2 for i=1,2,3,. . . ,n
Thank you in advance once again!
Solved
Problem solved !
Matrix A=[a ,b]
[b, d]
From A*H.1=lamda1*H.1 I took
lamda1=(a*sin(x)+b*cos(x))/sin(x)
and lamda1=(b*sin(x)+d*cos)/cos(x)
From A*H.2=lamda2*H.2 I took
lamda2=(a*cos(x)-b*sin(x))/cos(x)
and lamda2=(d*sin(x)-b*cos(x))/sin(x)
For each set of...
I started from the eq A*H.1= lamda1*H.1 where H.1 is the first column of H (the A matrix of user HallsofIvy) .
Then I did the same for lamda2 (the second eigen value that is unknown) and I got lamda1=]a*sin(x)+b*cos(x)]/sin(x) and another value lamda1=[b*sin(x)+d*cos(x)]/cos(x).
Also two...
I have made the assumption that matrix A should be symmetric because of the orthogonality of eigen vectors matrix! is this true? so matrix A = (a,b ;b, d) rows separated by ;
Hello to all of you,
Is there a way to get the matrix A=[a b c d] from the eigenvectors (orthogonal) matrix
H= sin(x) cos(x)
cos(x) -sin(x)
or to pose it differently to find a matrix that has these 2 eigenvectors ?
Thank you in advance .
Michael