The force applied to mass (m) is taken away and a force is applied to the larger mass (M). What I'm trying to determine is the force needed to be applied to mass (M) with no force on mass (m), to keep the mass (m) held against mass (M). For example: if you hold a book against a refrigerator...
The problem starts with two masses, m=16kg and M=88kg. m is pushed against the middle of M with a static friction coefficient of .38, and M is on a frictionless floor. The first part of question asked to find the force necessary to prevent m from falling. After drawing the free body diagram it...