Apostol's Calculus p. 17
Huh, so I think Ray Vickson's solution is totally valid, but I think Apostol wanted the reader to solve it using the idea of a supremum. It seems the difference between the two solutions is one where we're explicitly constructing a z that is in between y and x and the...
1. If x and y are arbitrary real numbers with x < y, prove that there is at least one real z satisfying
x<z<y.2. I'll be using this theorem:
T 1.32 Let h be a given positive number and let S be a set of real numbers. (a) If S has a supremum, then for some x in S we have x > sup S - h.The Attempt...
1) Just a pure joy from symbolic manipulation ( my brain is weird :D )
2) For more complicated statements, human language is ambiguous, so being able to translate a theorem from English to Logic is invaluable for my own type of thinking and understanding.
2a) I don't have to write as much
2b)...
Nice BD! I really like this, I feel there's something really beautiful about your formula. Something about the balancing of truthness between all three statements. One being true, the other two are 'weighed' with it, and the other two ones must be the inverse of the true one for the 'weighing'...
1. For arbitrary real numbers a & b, exactly one of the three relations hold:
a < b, a > b, a = b.
How do I state this more formally while also being correct?2. The attempt at a solution
a, b ∈ ℝ ( (a < b) ⊕ ( a > b ) ⊕ ( a = b) )
From this I made a truth table 2^3 entries long, and what we...