THIS THREAD HAS BEEN MOVED FROM ANOTHER FORUM BECAUSE IT IS HOMEWORK. BUT THERE IS NO TEMPLATE.
Hi everyone,
The problem gives that a particle moves in a circle with angular velocity ω. I know that r×ω=v, which is the velocity of the particle. However, I am told to differentiate and find τ=Iα...
Thank you so much. You helped me understand more in the last 30 minutes than I have so far this semester. And thank you for the post etiquette, I wasn't aware of it.
Okay, so I have the Thevenin resistance and if Vth=Rth*In where In is the norton current across ab if we were to just connect a to b with the same wire being used(in this case with zero resistance), then if I solve the entire circuit for the currents and I find the current across that a-b wire...
I know that I am supposed to short/open sources when finding the equivalent resistance, but I am not fully sure why. I think it is this misunderstanding that causes me confusion after finding the equivalent resistance, because it is after that where I have no idea how to move forward.
I believe my problem is that I know how to solve for the Thevenin resistance(open/short all voltage/current sources) but then what do I do with the Thevenin voltage? If I have reduced down a circuit to one resistor, how is the Thevenin voltage not the original voltage?
When I am told to find the Thevenin voltage, I am told to find the voltage across a and b. I can use Kirchhoff's loop rule to solve for currents throughout the circuit but how do I find the voltage across a and b? Do I say there is some load resistance attached? That doesn't seem to make sense...
Hello physics community!
This is my first post to PF and I hope to contribute much more as time goes on. I am having serious trouble understanding Thevenin and Norton equivalent circuits, more specifically on how to find a circuit's equivalent. It only seems appropriate that to find a circuits...