Recent content by Physics2009

  1. P

    Linear Dependency Check: {e^x, e^{2x}}

    if (e^x, e^{2x}) is linear denpendent, then e^{2x}=ke^{x},k\in R, k\ is\ constant \longrightarrow e^x=k,but e^x is not a constant, so (e^x, e^{2x}) is linear independent
  2. P

    Solving a Systems of Linear Equations and Matrices Problem

    \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 8\% & 9\% & 10\% \end{bmatrix} \vec{x} = \begin{bmatrix} 25000 \\ 1000 \\ 2190 \end{bmatrix},\rightarrow \vec{x}=\begin{bmatrix} 12000 \\ 7000 \\ 6000 \end{bmatrix}
Back
Top