I have the transformation laws of (Ax,Ay,Az,phi) which are like the (x,y,z,ct)
A=(Ax,Ay,Az) and phi are defined by
E = -1/c dA/dt - gradiant(phi)
and H = curl(A)
Special relativity help
A body travels at a speed c/10 from point A to point B distant 3 light years.
Is the time of the event "arrival of the body at B" with respect to the inertial reference frame at A, 30 years or 30.15 years?
Thank you for replying,
It is noted by my professor that:
Note that this result is highly non-trivial since usually the 3-dimensional scalar
product is NOT preserved under the 4-dimensional Lorenz transformations, so the case of the scalar product (E.H) is very special - it is the same in all...
An inertial reference frame 2 is moving along the x-axis with constant velocity v with respect to inertial reference frame 1.
......->-> ->->
How can i prove the E.H = E'.H' ?? (dot product)
using the 4 dimensional (Ax,Ay,Az,phi)
where E = -1/c dA/dt - gradiant(phi)
and H = curl(A)
Where E is...