Hi, I have a question about infinite limit of complex integral.
Problem: Consider the function ln(1+\frac{a}{z^{n}}) for n\ge1 and a semicircle, C , defined by z=Re^{j\gamma} for \gamma\in[\frac{-\pi}{2},\frac{\pi}{2}]. Then. If C is followed clockwise,
I_R = \lim_{R\rightarrow \infty}\int_C\...