yep, this is getting into my question. there's a pretty good elementary discussion in this
textbook "Electromagnetic Fields and Energy" by Haus and Melcher that gets into the
difference between electrostatics and magnetostartics into the area called {electro-or magneto}
quasistatics, and how to...
an ac analysis of a lumped circuit has time variation. determination of the circuit
properties is done using electrostatics to calculate voltages, resistances and capacitances,
and magnetostatics to calculate inductances and loop currents. There are simple circuits that
have high frequency...
well, that's not quite what I'm looking for.
The circumstance is that I've run a field solver on some presumably electrically small
device and I have a vector valued electric field in each element.
if I want to calculate the voltage between two points, I'd traverse an arbitrary path
between...
I'm interested in the idea of voltage.
if the curl of E =0, then E = -grad(potential), and it's
possible to calculate the voltage between two points
as the line integral of E over some path.
When there's a time changing magnetic induction, the
curl of E = -d(B)/dt. so strictly speaking...