Thanks for those links, I think they will lead me to a solution to my query. I have never heard of the 'lost cousin' of the fundamental theorem of algebra, it sounds funny but also kind of obvious. I think the idea of the number of terms determining the number of positive roots is just what I...
Thanks LurfLurf.
I agree with you that it has an infinite number of roots (real + complex). Is there any way to determine (in general) how many REAL roots such equations have, without actually trying to solve it. An upper bound on the number of REAL roots would suffice.
Is there any...
I was under the impression that transcendental equations contain transcendental functions (like e^x, cos(x) etc). The equations I am requesting help with contain transcendental numbers, yes, but not functions; they are of the type x raised to some numerical power (rather like a polynomial).
I am doing some independent study and appreciate that a polynomial (in x) of integer degree (n) can have at most n roots; many proofs to this effect exist.
My query concerns the number of roots of equations in which the powers of x are not integers (or rational numbers) but irrational...