Recent content by Shafikae

  1. S

    Where is the Classically Forbidden Region for a Ground-State Hydrogen Atom?

    I thought part (a) was asking for the prob of not finding it in the forbidden region.
  2. S

    Where is the Classically Forbidden Region for a Ground-State Hydrogen Atom?

    ohhhhhhhhhhhhhhhhhhhhh! I don't know why i thought number 1 was asking for something totally different! thanks a bunch!
  3. S

    Hydrogen atom wave function Help

    another part of this question is if the eigen function a parity operator... I know that under parity operation r -> -r (r,\theta, \phi) -> (r, pi - \theta, \phi + pi) I think it is a parity operator unless I'm not really understanding it. Am I wrong?
  4. S

    Where is the Classically Forbidden Region for a Ground-State Hydrogen Atom?

    for part (a), i know i would subtract part (b) from 1... but i want to do that actual math. Does the integral remain the same and just change the limit of integration from 0 to a0 ?
  5. S

    Where is the Classically Forbidden Region for a Ground-State Hydrogen Atom?

    ya sorry i meant cubed. ok good good so I'm on the right track. Thanks so much.
  6. S

    Hydrogen atom wave function Help

    Sorry I didnt know how to edit my post... and I only reposted because I realize it was suppose to be in the homework section. Yes I know they depend on all three variables. \psi100 (r,\theta, \phi) = \frac{exp(-r/a)}{\sqrt{pi*a3}} then i took the square of that and put it in an integral in...
  7. S

    Calculating Probabilities and Expectation Values for Hydrogen Atom Wave Function

    I know that if the subscripts are different then the int of \psi* \psi =0 I got something crazy for \psi322 but I was able to get the other 2 states. Am I suppose to integrate in terms of r from 0 to \infty ? Thank you.
  8. S

    Where is the Classically Forbidden Region for a Ground-State Hydrogen Atom?

    Oh you grey earl... totally forgot 1-P ... Vela so part (b) is incorrect? This is how I got the answer... Since a0 = bohr radius then the prob of the electron being found in classically forbidden region is (r>2a0) Then I took the integral of r2 exp(-2r/a0) (4/a0) from 2a0 to infinity...
  9. S

    Where is the Classically Forbidden Region for a Ground-State Hydrogen Atom?

    Any region of space in which the kinetic energy T of a particle would become negative is forbidden for classical motion. For a hydrogen atom in the ground state: (a) find the classically forbidden region (b) using the ground-state wave function \psi100(r), calculate the probability of finding...
  10. S

    Hydrogen atom wave function Help

    Consider a hydrogen atom whose wave function is at t=0 is the following superposition of energy eigenfunctions \psinlm(r) \Psi(r, t=0) = \frac{1}{\sqrt{14}}*[2\psi100(r) -3\psi200(r) +\psi322(r) What is the probability of finding the system in the ground state (100? in the state (200)? in...
  11. S

    Hydrogen atom wave function Help

    Consider a hydrogen atom whose wave function is at t=0 is the following superposition of energy eigenfunctions nlm(r) (r, t=0) = *[2100(r) -3200(r) +322(r) What is the probability of finding the system in the ground state (100? in the state (200)? in the state (322)? In another energy...
  12. S

    Calculating Probabilities and Expectation Values for Hydrogen Atom Wave Function

    Consider a hydrogen atom whose wave function is at t=0 is the following superposition of energy eigenfunctions \psinlm(r) \Psi(r, t=0) = \frac{1}{\sqrt{14}} *[2\psi100(r) -3\psi200(r) +\psi322(r) What is the probability of finding the system in the ground state (100? in the state (200)? in...
  13. S

    Canonical Transformation and harmonic-oscillator

    sorry i meanH = p2/2m +(1/2)kx2
  14. S

    Canonical Transformation and harmonic-oscillator

    Would the hamiltonian of a harmonic oscillator be H = p2/2 +(1/2)kx2
Back
Top