i used the maximum speed equation as the speed would be greatest at x=0 (the relaxed spring length).
max speed
(mv^2) = k(x^2)
0.017 kg * v^2 = 0.7 N/m * 0.03m^2
from this I got the result of: 0.0371 m/s.
I haven't entered it to see, can someone confirm this or show a mistake
A horizontal spring with stiffness 0.7 N/m has a relaxed length of 18 cm (0.18 m). A mass of 17 grams (0.017 kg) is attached and you stretch the spring to a total length of 21 cm (0.21 m). The mass is then released from rest. What is the speed of the mass at the moment when the spring returns to...
A horizontal spring with stiffness 0.7 N/m has a relaxed length of 18 cm (0.18 m). A mass of 17 grams (0.017 kg) is attached and you stretch the spring to a total length of 21 cm (0.21 m). The mass is then released from rest. What is the speed of the mass at the moment when the spring returns to...
I have a similar dilemma that I'm trying to figure out for a friend...it stumped both of us.
2(NaCl) + CuSO4 --> Na2SO4 + CuCl2
it asks for the net ionic equation and what the spectator ions are
A comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 5e10 m (inside the orbit of Mercury), at which point its speed is 9e4 m/s. Its farthest distance from the Sun is far beyond the orbit of Pluto. What is its speed when it is 6e12 m from the Sun...
A comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 5e10 m (inside the orbit of Mercury), at which point its speed is 9e4 m/s. Its farthest distance from the Sun is far beyond the orbit of Pluto. What is its speed when it is 6e12 m from the Sun...
A comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 5e10 m (inside the orbit of Mercury), at which point its speed is 9e4 m/s. Its farthest distance from the Sun is far beyond the orbit of Pluto. What is its speed when it is 6e12 m from the Sun...