$\sin^4(A)-\sin^2(A)\cos^2(A)+\cos^4(A)=(\sin^2(A)+\cos^2(A))^2-3\sin^2(A)\cos^2(A)$
This part can be rewritten as
$\sin^4(A)+\cos^4(A)-\sin^2(A)\cos^2(A)=(\sin^2(A)+\cos^2(A))^2-\sin^2(A)\cos^2(A)$
Expanding $(\sin^2(A)+\cos^2(A))^2=\sin^4(A)+2\sin^2(A)\cos^2(A)+cos^4(A)$
Now using it...