The order need not be ##xy##. Take ##Z_2## which is cyclic with generator ##1##. Then in the group ##Z_2 \times Z_2##, the element ##(1,1)## has order two since ##(1, 1) \neq (0,0)##, and ##(1, 1) + (1, 1) = (0, 0)##, yet ##Z_2 \times Z_2## has order ##4##, so ##(1,1)## does not generate ##Z_2...