Does someone who has Maple or Mathlab can give me aproximate solution of the integral, posiblly of int(10,45), and int(10,142). Error comarision goes to absurd. I get 3.3*10^-4 on pocket calculator for int(10,35). Simpson with above given boundries gives more than 10 times larger values.
Thanks, but i am totaly lost when i need to find int(xn-1,infinity). I try to make it lower than error estimate but i get either logaritmic inverse-trigonometric inequality as above or another insolvable integral.
I process from integral i get
1/3[ln((x+1)/sqrt(x^2-x+1))+sqrt(3)*arctg(2*sqrt(3)*x/3-sqrt(3)/3)] from M to +infinity <=1/4*10^-2
than i get
-ln((M+1)/(sqrt(M^2-M+1))) +sqrt(3)*(pi/2-arctg(2*sqrt(3)*M/3-sqrt(3)/3))<=7.5*10^-3
and i can't find any exact solution to solve that
I process from integral i get
1/3[ln((x+1)/sqrt(x^2-x+1))+sqrt(3)*arctg(2*sqrt(3)*x/3-sqrt(3)/3)] from M to +infinity <=1/4*10^-2
than i get
-ln((M+1)/(sqrt(M^2-M+1))) +sqrt(3)*(pi/2-arctg(2*sqrt(3)*M/3-sqrt(3)/3))<=7.5*10^-3
and i can't find any exact solution to solve that
Im supposed to solve
integral 10 to +infinity ((sin(1/x)/(1+x^3))dx with error precision of e=0.5*10^-4. Can someone please give me detailed explenation of solving this. (Supposedly by Simpson but i get lost in the way.
P.S. sorry for bad spelling and lack of proper formula notions.
Im supposed to solve
integral 10 to +infinity ((sin(1/x)/(1+x^3))dx with error precision of e=0.5*10^-4. Can someone please give me detailed explenation of solving this. (Supposedly by Simpson but i get lost in the way.
P.S. sorry for bad spelling and lack of proper formula notions.