Thank you! Really appreciate the guidance... Although, I appear to be off by a factor 1/10:
Vmax=wA
Amax=w^2A
where w= Vmax/A, thus Amax=[(Vmax/A)^2]xA
Hence, A= Vmax^2/Amax= 3.0625/18.6= .165m.
Hence, w=1.75/.165= 10.60... though my text says it should be 1.06 or 10.6^-1...
Where would my error...
x'(t)=-wAsin(wt)
So, if I want to maximize my velocity, I'd need to make sin(wt)=1, since sine oscillates between -1, and 1, the appropriate time would be at π/2? Hence, I would be left with x'(t)max=-wA(1)
then, x''(t)=-w^2Acos(wt) would need to have cos(wt)=1 as well in order to get max...
Terribly sorry... I'm not sure what my first steps would be to find the angular frequency, ω, given a mass of 342-g attached to a spring undergoing simple harmonic motion, a max acceleration of 18.6m/s^2, and a maximum speed* of 1.75 m/s. Essentially, I don't know how to use F=-kx, x(t)=Acos(ωt...
Homework Statement
A 342-g mass is attach to a spring and undergoes SHM.
Its max accelerations is 18.6m/s^2
Its max velocity is 1.75m/s
Homework Equations
x(t)=Acos(wt)
x'(t)=-wAsin(wt)
x''(t)=-w^2Acos(wt)
w=sqrt(k/m)
The Attempt at a Solution
I essentially derived these equations and have...