Well, I suggest you use integration by parts since
$$\frac {\partial }{\partial x} E(-xy)^n =-n\frac {e^{xy}}{x} E(-xy)^{n-1} $$
I think it is easy for small values of n. Try to generalize it.
$$\lim_{z \to \infty}\mathrm{Cin}(z)-\log z = \gamma$$
Write the integral representation
$$\lim_{z \to \infty}\int^z_0 \frac{1-\cos(t)}{t}dt-\log z $$
Can be written
$$\lim_{z \to \infty}\int^z_0 \frac{1-\cos(t)}{t}dt-\int^z_0\frac{1}{1+t}dt= \int^\infty_0...