ThomasT said:
So, you think that most physicists would say that nature is not evolving according to local and discoverable underlying dynamics?
Yes, virtually all of them would say this. Please stop trying to use a few cherrypicked papers where the authors disagree with this conclusion to suggest otherwise. If you want to get a sense of what most physicists think rather than just confirm your own biases, try looking at textbooks which discuss Bell's theorem (you could go to
google books and entering the keywords "bell's theorem" and "inequality"), you'll notice that all the textbooks written by physicists just present it as a straight fact that Bell's theorem shows QM is incompatible with local realism (or local causality or theories of local hidden variables, the exact wording may vary), they don't suggest any controversy about this conclusion.
JesseM said:
Asking whether or not the universe's fundamental laws are local realist ones is certainly a question "about nature", and the opinion of virtually all mainstream researchers is that Bell's theorem proves on a theoretical level that violations of Bell inequalities imply local realism must be false.
ThomasT said:
I don't think that's the case.
Well it is, and as an amateur in the subject you can have little rational basis for believing otherwise--finding a few fringe authors who disagree doesn't qualify as a good basis. Again, try the experiment of looking in textbooks--would you disagree that if physics textbooks all present some theoretical conclusion as a fact, then it's a safe bet that this conclusion is one that the majority of physicists would agree with?
ThomasT said:
Anyway, here's those papers that I forgot to post here. The authors disagree with your assessment of Bell.
Possible Experience: from Boole to Bell
http://arxiv.org/PS_cache/arxiv/pdf/...907.0767v2.pdf
Published in: EPL, 87 (2009) 60007
Extended Boole-Bell inequalities applicable to quantum theory
http://arxiv.org/PS_cache/arxiv/pdf/...901.2546v2.pdf
Your URLs are messed up, should be
here and
here. The first deals specifically with the Leggett-Garg inequality which is somewhat different from other Bell-type inequalites as it requires the additional assumption that in two successive measurements on the same system (with a timelike, not a spacelike separation), the first measurement will not influence the probability distribution for possible results on the second. And their example involving doctors and patients simply does not conform to the experimental conditions assumed by the inequality, see my discussion of this paper with billschnieder in
post 941 and
post 961 on
this thread (I got sidetracked from continuing that discussion with bill but I intend to follow up on his last comment to me soon).
The first paper did appear in a peer-reviewed publication, the
epl journal, perhaps because it didn't make the strong claim that the example they provided was actually a local realist violation of the Leggett-Garg inequality or any other Bellian inequality, you can interpret the paper as just being about an analogous inequality that fails to hold because the conditions under which the data is collected and indexed are different from those assumed in the derivation of Leggett-Garg (as well as the conditions assumed in the derivation of Boole's original inequality). The second paper, on the other hand, doesn't appear to have been published anywhere outside of arxiv.org (see google scholar search
here), which doesn't require peer-review. I haven't read through it in detail, but skimming it the argument appears similar to the first paper, in that they are considering situations where the procedure by which data is collected and indexed does not conform to the conditions stipulated by Bell inequalities (or the conditions needed for a derivation of Boole's own inequality). In fact they mention the exact same example involving doctors and patients from the earlier paper on pp. 25-27 of this second paper. They do claim that it is possible to explicitly violate Bell's theorem with locally causal models on p. 28:
We have shown in a series of papers42,43,47,48,59 that it is
possible to construct models, that is algorithms, that are lo-
cally causal in Einstein’s sense, generate the data set Eq. (126)
and reproduce exactly the correlation that is characteristic for
a quantum system in the singlet state. These algorithms can
be viewed as concrete realizations of Fine’s synchronization
model8. According to Bell’s theorem, such models do not ex-
ist.data set leads to a violation of Boole’s inequalities, the
only conclusion that one can draw is that the data set
does not satisfy the conditions necessary to prove the
Boole inequalities, namely that three data sets of pairs
can be extracted from a single data set of triples (see
Section II).
...but the details of these models aren't provided in this paper, so there's no way to verify if the models actually conform to all the necessary conditions for Bell's proof. Back in
post 62 of the thread 'Bell Theorem' I once suggested a test of any claim that a local model can replicate BI violations, by simulating the model using a set of computers which are cut off from communicating with one another at some time prior to the experimenter's choice of what detector setting to use (analogous to the fact that in Bell's proof, the past light cones of the two measurements stop overlapping at some time prior to the choice of detector setting for each measurement--each computer's internal state at a given time can be simulating an arbitrary number of local variables in the past light cone of a measurement). I feel totally confident that the authors of the paper would not be able to come up with an algorithm that would allow for BI violations in this scenario (which can stand for any of the inequalities proposed by Bell for measurements on pairs of particles at a spacelike separation, although it does not stand for the Leggett-Garg inequality where the two measurements have a timelike separation):
If anyone proposes that a local hidden variables theory can explain the results of these experiments, there's no reason that such a theory could not be simulated in the setup I described, where a middle computer M can send signals to two different computers A and B until some time t when the computers are disconnected, and some time after t the experimenters (real or simulated) make choices about which orientation to use for the simulated detector (if the experimenters are real people interacting with the simulation they could make this choice by deciding whether to type 1, 2, or 3 on the keyboard, for example), and each computer A and B must return a measurement result.
(note that in some Bell inequalities it's assumed that there are 2 possible detector settings for each experimenter rather than 3, in which case each experimenter could only choose to enter 1 or 2 on the keyboard of their computer on each trial and the computer would have to return a measurement result).
If you have followed the authors' argument in this second paper and think they show it would be possible to get a BI violation in this type of simulation, please explain. Likewise if you think they show it would be possible to get a violation of a BI in a scenario that matches all the observable experimental conditions stipulated in the derivation of the inequality, please explain. But if you haven't really followed the argument of the paper, and are just citing a paper you don't understand to support your claim that there is widespread disagreement among physicists about whether Bell's theorem showed QM was incompatible with all local realist theories, then one can show the absurdity of this claim just by noting that you're pointing to a non-peer-reviewed paper uploaded to arxiv.org which has led to no real reactions from the physics community (in the form of other physicists citing the paper--
only four papers have cited it so far, two by De Raedt), and that physics textbooks which mention Bell's theorem uniformly present it as a valid demonstration that QM is incompatible with local models.
ThomasT said:
First, just consider quantum and classical polarimeters without reference to BIs or optical Bell tests. They both produce results in accord with Malus Law.
Malus' law is a classical law dealing with classical electromagnetic waves of known polarization, and the reduction in intensity of the wave when it passes through a polarizer. Since the reduction in intensity of a light beam passing through a polarizer is in QM equal to the fraction of photons that make it through the polarizer, I think it would be reasonable to say there is a quantum version of Malus' law in a situation where a set of photons are all in the same known polarization eigenstate at some angle (say, because they already passed through a first polarizer at that angle) and we want to know the fraction of them that will make it through a polarizer at a different angle (so in this scenario each photon encounters two polarizers in succession). However, if you're talking about an experiment involving pairs of entangled photons which each pass/don't pass through a
single polarizer, it is meaningless to say that "Malus' law" predicts anything about this situation, since Malus' law only applies when you know the polarization of the light, and we don't know anything about the polarization of each pair when they are generated (and after they pass through polarizers, the entanglement between their polarizations is broken). Do you disagree?
ThomasT said:
Now consider, say, an Aspect or F and C optical Bell test setup where you have an emitter of entangled photons between two polarizers, a and b, between two detectors, A and B, respectively. Take the polarizer, a, and place it between the emitter and the polarizer, b. So, on the left side there is just a detector, A, and on the right side there are polarizers, a and b, between the emitter and detector B. The right side is now a polarimeter. It produces results in accord with Malus Law, as all polarimeters do. And the coincidence rate, ie. F(AB), is the same as with the original setup, .5 cos^2 |a-b|, in the ideal.
Why do you have an 0.5 in front of cos^2 (a-b)? I'm not sure of the exact "original setup" you're thinking of, but if the photons are entangled in such a way that identical measurements on each will yield the same results with probability 1, then if both polarizers are at the same angle so a-b=0, then the probability of getting the same result (either both passing through the polarizers, or both being reflected) should be cos^2(0) = 1, not 0.5 cos^2(0) = 0.5.
Assuming you should have written cos^2 (a-b) for the original setup, your altered setup above will
not give the same results. After all, given perfectly efficient detection, on the left side every photon sent out by the emitter should be detected at A, since there are no polarizers to reflect photons sent to the left. On the right side, even if a and b are at the same angle so cos^2(a-b)=1, it is quite possible for some of the entangled photons to be reflected by polarizers at that angle rather than passing through, in which case the coincidence rate in this setup is
not cos^2 (a-b).
ThomasT said:
But Herbert, vis Bell, requires that the polarimeter produce a linear relationship between |a-b| and rate of detection.
Presumably Herbert/Bell would not require this in any arbitrary setup like the one you describe above, only in the particular setup assumed in the derivation of the Bell inequalities, where a represents a detector setting in the region of the measurement at A and b represents a detector setting in the region of the measurement of B, with a spacelike separation between the two random choices of detector settings.
ThomasT said:
This is why I said that light was being required by Herbert, vis Bell, to behave in a way contrary to what thousands of polarimetric experiments have shown.
Your statistics don't actually seem to work as noted earlier, and in any case this is just a strawman if "Herbert, vis Bell" (can you point to what particular statement of Herbert you are talking about?) was only talking about such a linear relationship in the type of experiment assumed by Bell where there was a spacelike separation between the random choice of setting a and the random choice of setting b.
JesseM said:
... rest assured the notion that Bell's proof is invalid is a thoroughly fringe notion ...
ThomasT said:
Nobody's arguing about Bell's mathematical proof, or the validity of experiments in which BIs are violated. What's being contested is the interpretation of BI violation, leading to a more appropriate phrasing of Bell's theorem.
Whe I said "the notion that Bell's proof is invalid", I was talking about the notion that Bell's proof does not correctly show (as it purports to) that all local realist models would produce results satisfying Bell inequalities in the experimental setup Bell was assuming. The idea that Bell's proof is invalid in this broad sense is indeed a "thoroughly fringe notion", and the type of textbook search I suggested (or a
representative search of the literature, rather than a search for cherrypicked examples of papers by the tiny number of physicists who disagree) will show this. Again, if you want to have a discussion about some paper that questions Bell's proof I (or others like DrChinese) can do that, but please stop trying to present disagreement with Bell as something that is common among physicists when you have nothing but wishful thinking to back it up.
ThomasT said:
So, JesseM, thanks for bearing with me. I'm hoping that we might go through at least one of the papers I linked to. It will be very instructional for me, as well as probably for a lot of noncontributing readers of this thread. Maybe just take a page every few days or so and post your comments. Take it slow, because, you're right, at the moment I don't fully understand them.
If there is some specific thing you have a question about we can discuss it, but I don't really feel like going through a detailed analysis of everything in those papers. You may find my comments about the first paper in the earlier discussion with billschnieder that I linked to helpful, and soon I plan to post a little more on the subject in response to bill's last post to me.