jaumzaum said:
LastOneStanding said:
George, I know this is largely a matter of taste, but I think the relativistic Doppler effect is the least clear way of explaining the twin paradox. It takes a lot of work when first explaining relativity to get the point across that when we talk about events, we're not discussing when these events appear to happen in different reference frames but when they actually happen, taking into account the relativity of simultaneity. I think emphasizing what the twins actually see is unnecessarily confusing and risks giving the false impression that time dilation is just some kind of visual trick. Since the times when clock ticks are seen are governed by the relativistic Doppler effect, which is just the non-relativistic Doppler effect plus time dilation, you are ultimately just starting with time dilation, adding in the lag effect on finite propagation of light (i.e. the non-relativistic component of the Doppler effect), and then subtracting the lag effect out again (when showing how each twin would use their observations to calculate their sibling's age). I think that's a lot of needless clutter.
Personally, I find the clearest explanation is to not bother with any talk of when various age milestones are seen in each twins' frame and just focus on when they happen in each frame—i.e. the spacetime diagram approach. It's easy as pie to show that, while time dilation is indeed symmetric on each leg of the trip (separately!), relativity of simultaneity means that when the traveling twins makes her about-face, her brother ages a large amount in her frame in a very small amount of time—instantaneously in the limit of an instantaneous turnaround—and this more than makes up the difference. Everyone has their pedagogical preference, but I really think not futzing around with super telescopes does a much better job of showing precisely how the asymmetric aspect of the twins' experience (one inertial reference frame vs. two) directly leads to the correct calculation in both frames.
I think I've got what you mean. Pretend I'm sending messages to my brother year by year, and he does the same . At the moment of the about-face my brother will receive many messages of mine, and when he arrives in Earth, I will be older.
But does't it mean that in the accelerated referential of the spaceship (at the moment of the about-face) see the light would aprroximating with a velocity bigger than c?
I know that c is constant for intertial referentials, I don't know how it works for accelerated referentials. Is it possible?
No, your brother will not receive many messages from you at the moment of his about-face. His about-face will not cause him to receive any messages from you. What's going to happen is that for the first half of his trip, he will receive messages from you at a slower rate than he sends them (1/R as I said in my first post to you), then for the second half of his trip he will receive messages from you at a faster rate than he sends them (R).
So for your example of your brother traveling at 0.5c, we can use the Relativistic Doppler formula to calculate what R is:
√((1+β)/(1-β)) = √((1+0.5)/(1-0.5)) = √((1.5)/(0.5)) = √3 = 1.732
And 1/R is the reciprocal, 0.57735.
This means that he will see your yearly messages coming to him slower than his during the first half of the trip. In fact it will take 1.732 years before he sees your first message.
And for the last half his trip, he will see your messages arriving more often than once per year according to his clock. It will only take 0.57735 years between each of your messages.
Now without knowing how long the trip will take, we can average these two numbers:
(1.732+0.57735)/2 = 2.30935/2 = 1.154675
This is the final ratio of your two clocks when he returns. How ever many years it took him according to his clock, yours will be 1.154675 times that amount.
So let's say your brother travels away at 0.5c for 13 years and then takes 13 years to get back at the same speed. Here is a spacetime diagram to show what is happening
according to your rest frame. I show you as a thick blue stationary line with dots every year and your messages going out as thin blue lines traveling at c. I show your brother as a thick black line traveling at 0.5c with black dots every year and his messages coming back to you as thin black lines:
Now let's see how the previous calculations based on Relativistic Doppler fit in with this diagram. First off, I said that the rate at which your brother receives your yearly messages take 1.732 of his years. Can you see that on the graph? For example, at about his year 12, just before he turns around, he is just receiving the message you sent at your year 7. Can you follow that? If we divide 12 by 7 we get 1.714 which is about right. (We don't expect it to be exact because he didn't receive your message exactly at his year 12.)
Furthermore, if you look at your year 12, you can see that you are just receiving his message from year 7. It's symmetrical.
Now you should be able to see that after he turns around, he starts receiving your messages faster than one per year. In fact, from about his year 19 (you'll have to count his dots) to when you meet at his year 26, he will have received your messages from year 18 to 30. That is a ratio of the differences of (26-19)/(30-18) = 7/12 = 0.583, close enough to 0.577.
And in a similar manner, you can see that from his year 14 (just after he turns around) until you meet (12 years of messages from him), you will see them from your year 23 to your year 30 (7 years) and the reciprocal ratio applies.
Now that we can look at a spacetime diagram, we can see that the reason why the two of you age differently is because your brother sees these two ratios for half of his total trip time each but you see the smaller ratio for three-quarters of the time and the higher ratio for just one-quarter of the time. This means you are seeing him age less for a longer time while he sees you age less for half the time.
The last thing we want to notice is that ratio of your final age difference is 30/26 or 1.1538, very close to the actual 1.154675. (Again, these numbers are not exact because we're eyeballing them off the diagram.) This ratio is the famous value of gamma which is also the time dilation factor which shows in the diagram as the ratio of the coordinate time for your brother compared to his actual time on his clock. Can you see that?
Now I want to show you what the exact same information presented in the first diagram looks like in two more diagrams based on the IRF's in which your brother is at rest, first during his outbound leg and then during his inbound leg. First the outbound leg:
Notice how your brother's time is not dilated during the outbound leg (because he is at rest) but yours is. Note also that he has to travel at a higher speed than 0.5c (look up "veloctiy addition" in wikipedia to see that this higher speed is 0.8c) when he turns around and therefore now has more time dilation than you have. Nevertheless, all the signals between the two of you continue to travel at c and arrive at exactly the same times according to your own clocks as they did before. Does this all make sense to you?
Finally the diagram for the IRF in which your brother is at rest during the inbound leg:
This is very similar to the previous diagram so I won't go into any more explanation except that I want to point out that when your brother turns around, in no case does that have any bearing on what you see, until some time later and even then, each diagram shows accurately what you actually see and what your brother actually sees during the entire scenario.
Any questions?