Of the several problems with an H2 economy by far the most intractable to my mind is the transportation and/or storage of H2 as a fuel. With some of the more recent developments I 've been musing that perhaps a solar/wind/grid based local roadside H2 station might start to make sense. Details below. First the problems w/ H2 up until now.
This chart lays it out nicely:
http://www.physorg.com/news85074285.html
To run an H2/fuel cell car, starting with 100kWh electric power one ends up w/ only 23kWh of tractive power delivered by the vehicle:
AC-DC: 95%
Electrolysis: 75%
Compression: 90%
Transport/transfer: 80%
Fuel Cell: 50%
Electric drive train: 90%
So far the logistics of providing roadside fueling of an H2 car has meant:
stage 1: a large electrolysis center somewhere w/ with a massive megawatt connection to the grid to make the H2 (or reforming from natural gas but let's drop the fossile source for this line). Then compression, storage, and transport to local road side stations. Note that it takes 15-20 tankers of compressed 3000 to 5000 psi H2 to deliver the energy equivalent of one gasoline tanker, and existing pipelines won't handle H2 at all.
stage 2: road side H2 station, storage again until delivered to the vehicle.
Now some musing on how this might be done differently, given recent developments:
-Nocera's efficient and cheap electrolysis breakthrough (linked above)
-Improving solar PV efficiency and technology, especially concentrated PV
-Electric transmission becoming more expensive and difficult.
These three lead me to the concept of a completely local, self sufficient H2 roadside station. Given: the average existing US gas station pumps 2000 gal/day. At 136Mjoule/gal-gasoline, that's 272000 Mjoule/day, or 76000 kW-hrs/day. Assuming the new H2/fuel cell cars are 3X more efficient than existing ICE cars, we need only a third, or 25300 kW-hrs/day of equivalent electrical energy.
Now, efficiencies. We need no AC/DC conversion. After 90% efficient Nocera on-site electrolysis and 90% efficient on-site compression we need 31234 kW-hrs/day. To get that from the grid means a 1.3MW
average electric service at all 200,000 US filling stations, hard for both the local filling stations and the grid at large to accommodate, so let's try onsite generation.
Solar is a good fit here in a sunny climate because we're along side the highway, and because we don't care about variability. One just buffers enough H2 to stay ahead of demand. At a year round average of http://rredc.nrel.gov/solar/old_data/nsrdb/redbook/atlas/" , have that kind of land to spare.
Cost? Solarbuzz says http://www.solarbuzz.com/statsCosts.htm" claims they'll be doing 7 cents/kWh in a couple years.
