Functional Quantization of Scalar Fields

maverick280857
Messages
1,774
Reaction score
5
Hi everyone,

I'm reading section 9.2 of Peskin and Schroeder, and have trouble understanding the origin of a term in the transition from equation 9.26 to 9.27. Specifically, equation 9.26 is

\frac{1}{V^2}\sum_{m,l}e^{-(k_m\cdot x_1 + k_l\cdot x_2)}\left(\prod_{k_{n}^{0}>0}\int d \Re \phi_{n}d \Im \phi_{n}\right)\times (\Re \phi_m + i\Im \phi_m)(\Re \phi_n + i\Im \phi_n)\times\exp{\left[-\frac{i}{V}\sum_{k_{n}^{0}>0}(m^2-k_{n}^2)\left[(\Re \phi_n)^2 + (\Im \phi_n)^2\right]\right]}

This splits into two cases:

Case 1: k_l = k_m, when the integral is zero.
Case 2: k_l = -k_m, when the integral is nonzero.

So, evaluating the Gaussian integral one gets

\mbox{Numerator} = \frac{1}{V^2}\sum_{m,l}e^{-(k_m\cdot x_1 + k_l\cdot x_2)}\left(\prod_{k_{n}^{0}>0}\frac{-i\pi V}{m^2 - k_{n}^2}\right)\frac{-iV}{m^2-k_{m}^2-i\epsilon}

Where does the factor

\frac{-iV}{m^2-k_{m}^2-i\epsilon}

come from? I know this is like \int x^2 e^{-x^2}dx, but I can't seem to get this factor.)
 
Physics news on Phys.org
Anyone?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top