The Klein-Gordon equation has the Schrodinger equation as a nonrelativistic limit, in the following sense:(adsbygoogle = window.adsbygoogle || []).push({});

Start with the Klein-Gordon equation (for a complex function ##\phi##)

## \partial_\mu \partial^\mu \phi + m^2 \phi = 0##

Now, define a new function ##\psi## via: ##\psi = e^{i m t} \phi##. Then the equation for ##\psi## is:

## \ddot{\psi} -2 i m \dot{\psi} -\nabla^2 \psi = 0##

Now, if we assume that ##\ddot{\psi}## is small compared with the other terms, then we have approximately:

## -2 i m \dot{\psi} -\nabla^2 \psi = 0 \Rightarrow i \dot{\psi} = - \frac{1}{2m} \nabla^2 \psi##

That's Schrodinger's equation. So that seems to work. But now, instead of looking at equations of motion, let's look at the field theory.

The Schrodinger equation follows from a field-theoretic lagrangian density:

##\mathcal{L} = - i (\psi^* \dot{\psi} - \dot{\psi^*} \psi) - \frac{1}{2m} (\nabla \psi^*) \cdot (\nabla \psi)##

which corresponds to the hamilton density:

##\mathcal{H} = \frac{1}{2m} (\nabla \psi^*) \cdot (\nabla \psi)##

Now, what I would expect is that just as the Klein Gordon equation has the Schrodinger equation as a nonrelativistic limit, the relativistic hamiltonian density should have the appropriate nonrelativistic limit, as well. But it doesn't quite work.

A relativistic lagrangian density that yields the Klein-Gordon equation is:

##\mathcal{L} = \frac{1}{2} \dot{\phi^*} \dot{\phi} - \frac{1}{2} (\nabla \phi^*) \cdot (\nabla \phi) - \frac{m^2}{2} \phi^* \phi##

This corresponds to a Hamiltonian density (I think).

##\mathcal{H} = \frac{1}{2} \dot{\phi^*} \dot{\phi} + \frac{1}{2} (\nabla \phi^*) \cdot (\nabla \phi) + \frac{m^2}{2} \phi^* \phi##

Now, let's try the same trick: Let ##\phi = e^{-imt}\psi##. Then in terms of ##\psi##:

##\mathcal{H} = \frac{1}{2} \dot{\psi^*}\dot{\psi} + \frac{im}{2} (\psi^* \dot{\psi} - \dot{\psi^*} \dot{\psi}) + \frac{1}{2} (\nabla \psi^*) \cdot (\nabla \psi) + m^2 \psi^* \psi##

Assuming once again that the first term is negligible compared to the others gives you:

##\mathcal{H} = \frac{im}{2} (\psi^* \dot{\psi} - \dot{\psi^*} \psi) + \frac{1}{2} (\nabla \psi^*) \cdot (\nabla \psi) + m^2 \psi^* \psi##

That doesn't look anything like the nonrelativistic Hamiltonian density. It doesn't even have the right units (although I guess you could fix that by rescaling ##\psi##).

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Nonrelativistic limit of scalar field theory

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**