Riemannian Manifolds: An Introduction to Curvature by Lee

Click For Summary
SUMMARY

John Lee's "Riemannian Manifolds: An Introduction to Curvature" is a comprehensive resource for understanding curvature in Riemannian geometry. The book covers essential topics such as Riemannian metrics, geodesics, and the Gauss-Bonnet theorem, structured across its first seven chapters. A prerequisite for this text is Lee's "Introduction to Smooth Manifolds," which provides foundational knowledge on smooth manifolds, tangent spaces, and tensor fields. This book is particularly beneficial for graduate-level students and those interested in advanced geometry.

PREREQUISITES
  • Understanding of smooth manifolds
  • Familiarity with tangent spaces
  • Knowledge of vector bundles
  • Basic concepts of tensors and tensor fields
NEXT STEPS
  • Study "Introduction to Smooth Manifolds" by John Lee
  • Explore Riemannian metrics and their applications
  • Research the Gauss-Bonnet theorem and its implications in geometry
  • Learn about Jacobi fields and their role in Riemannian geometry
USEFUL FOR

Graduate students, mathematicians, and physicists interested in Riemannian geometry and curvature analysis will benefit from this discussion.

For those who have used this book

  • Lightly Recommend

    Votes: 0 0.0%
  • Lightly don't Recommend

    Votes: 0 0.0%
  • Strongly don't Recommend

    Votes: 0 0.0%

  • Total voters
    3
micromass
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
22,170
Reaction score
3,327

Table of Contents:
Code:
[LIST]
[*] Preface 
[*] What Is Curvature?
[LIST]
[*] The Euclidean Plane
[*] Surfaces in Space
[*] Curvature in Higher Dimensions
[/LIST]
[*] Review of Tensors, Manifolds, and Vector Bundles 
[LIST]
[*] Tensors on a Vector Space
[*] Manifolds
[*] Vector Bundles
[*] Tensor Bundles and Tensor Fields
[/LIST]
[*] Definitions and Examples of Riemannian Metrics 
[LIST]
[*] Riemannian Metrics
[*] Elementary Constructions Associated with Riemannian Metrics
[*] Generalizations of Riemannian Metrics
[*] The Model Spaces of Riemannian Geometry
[*] Problems
[/LIST]
[*] Connections 
[LIST]
[*] The Problem of Differentiating Vector Fields
[*] Connections
[*] Vector Fields Along Curves
[*] Geodesics
[*] Problems
[/LIST]
[*] Riemannian Geodesics 
[LIST]
[*] The Riemannian Connection
[*] The Exponential Map
[*] Normal Neighborhoods and Normal Coordinates
[*] Geodesics of the Model Spaces
[*] Problems
[/LIST]
[*] Geodesics and Distance 
[LIST]
[*] Lengths and Distances on Riemannian Manifolds
[*] Geodesics and Minimizing Curves
[*] Completeness
[*] Problems
[/LIST]
[*] Curvature
[LIST]
[*] Local Invariants
[*] Flat Manifolds
[*] Symmetries of the Curvature Tensor
[*] Ricci and Scalar Curvatures
[*] Problems
[/LIST]
[*] Riemannian Submanifolds 
[LIST]
[*] Riemannian Submanifolds and the Second Fundamental Form
[*] Hypersurfaces in Euclidean Space
[*] Geometric Interpretation of Curvature in Higher Dimensions
[*] Problems
[/LIST]
[*] The Gauss–Bonnet Theorem 
[LIST]
[*] Some Plane Geometry
[*] The Gauss–Bonnet Formula
[*] The Gauss–Bonnet Theorem
[*] Problems
[/LIST]
[*] Jacobi Fields 
[LIST]
[*] The Jacobi Equation
[*] Computations of Jacobi Fields
[*] Conjugate Points 
[*] The Second Variation Formula
[*] Geodesics Do Not Minimize Past Conjugate Points
[*] Problems
[/LIST]
[*] Curvature and Topology 
[LIST]
[*] Some Comparison Theorems 
[*] Manifolds of Negative Curvature
[*] Manifolds of Positive Curvature
[*] Manifolds of Constant Curvature
[*] Problems
[/LIST]
[*] References 
[*] Index
[/LIST]
 
Last edited by a moderator:
Physics news on Phys.org
This is an excellent book, one of my favorites. Definitely the best place to learn about connections, parallel transport, geodesics and curvature. This is covered in the first 7 chapters, 129 pages. The rest of the book covers stuff that most physicists probably won't be very interested in.

You should study the basics of manifold theory in "Introduction to smooth manifolds" before you study this one. You don't need to study the entire book, but you should make sure that you understand the terms smooth manifold, tangent space, cotangent space, vector bundle, tensor and tensor field.
 

Similar threads

  • Poll Poll
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • Poll Poll
  • · Replies 10 ·
Replies
10
Views
8K
  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
4K
  • Poll Poll
  • · Replies 15 ·
Replies
15
Views
21K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 31 ·
2
Replies
31
Views
6K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K