A technical subject, well above my level it seems (I'm still learning about quantum physics and special relativity), but one about which I absolutely must get some clear ideas as soon as possible.
From what I 'understand', Noether's second theorem applies to infinite-dimensional symmetry...
Suppose we have an action ##S=S(a,b,c)## which is a functional of the fields ##a,\, b,\,## and ##c##. We denote the variation of ##S## wrt to a given field, say ##a##, i.e. ##\frac{\delta S}{\delta a}##, by ##E_a##.
Then ##S## is gauge invariant when
$$\delta S = \delta a E_a + \delta b E_b...
If the Universe could somehow reach a state of infinite entropy (or at least a state of extremely high entropy), would all fundamental symmetries of the physical laws (gauge symmetries, Lorentz symmetry, CPT symmetry, symmetries linked to conservation principles...etc) fail to hold or be...
I know of some physicists (e.g Holger B Nielsen, Grigory Volovik or Edward Witten) who have proposed that all symmetries (Local gauge symmetries associated with forces and dynamics and global symmetries associated with conservation laws) are emergent rather than fundamental.
Are there any other...
This is a topic I've mentioned a few times before. Essentially the structure of matter in quantum gauge field theories is unclear to me. I have no clear question here, just some initial discussion points.
So at the first level, it seems a particle based view of quantum field theory is difficult...
Hi, this question is related to global and local SU(n) gauge theories.
First of all, some notation: ##A## will be the gauge field of the theory (i.e: the 'vector potential' in the case of electromagnetic interactions) also known as 'connection form'.
In components: ##A_\mu## can be expanded in...
I think the story where abelian, i.e. U(1), gauge symmetry comes from is pretty straight-forward:
We describe massless spin 1 particles, which have only two physical degrees of freedom, with a spin 1 field, which is represented by a four-vector. This four-vector has 4 entries and therefore too...
The mantra in theoretical physics is that global gauge transformations are physical symmetries of a theory, whereas local gauge transformations are simply redundancies (representing redundant degrees of freedom (dof)) of a theory.
My question is, what distinguishes them (other than being...
Hey gang,
I'm re-working my way through gauge theory, and I've what may be a silly question.
Promotion of global to local symmetries in order to 'reveal' gauge fields (i.e. local phase invariance + Dirac equation -> EM gauge field) is, as far as i can tell, always done on the Lagrangian...
I first thought of posting on cataloguing various Grand Unified Theory proposals, but that would be an enormous task, so I decided on something simpler: cataloguing proposed GUT gauge-symmetry groups.
The unbroken Standard-Model symmetry is SU(3)C * SU(2)L * U(1)Y
QCD:
SU(3)C -- color...
hello all
gauge symmetries are redundencies of the description of a situation. Therefore they are not real symmetries. So in what sense does it mean to spontaneously break a gauge symmetry?
ian
I'm searching informations about the Gauge simmetries and their application in physics; where can i search in internet and where on books? thanks for answers