Hamilton Definition and 72 Threads
-
P
Solving Hamilton Equations with Limited Knowledge
Homework Statement [PLAIN]http://img411.imageshack.us/img411/4412/sssa.jpg Homework Equations The Attempt at a Solution Actually I have very basic knowledge of university physics and math, so the only things I've done are calculating Hamilton equations (I hope correctly)...- psycho_dad
- Thread
- Hamilton Knowledge
- Replies: 9
- Forum: Advanced Physics Homework Help
-
E
Why cant Hamilton mechanics deal with friction
I know the Liouville's theorem. but i just can't understand. so i considered an example of friction: ma=-bv; and the Lagrange is: L=1/2 mv^{2}+bxv /b is a coefficient of friction/ after i substituted it into Hamilton formulation, it turns out to be: ma=0 so the friction is vanished... -
P
Movement of planet in central force - hamilton mechanics
Hello, sorry for my English:D Homework Statement I am trying to find motion equations for a mass moving around a big mass (ex. planet around sun), assumption is that the mass in middle is static (so this can be reduced to moving of mass around central force in middle of cartesian system), and...- player1_1_1
- Thread
- Central force Force Hamilton Mechanics Movement Planet
- Replies: 2
- Forum: Advanced Physics Homework Help
-
S
How Are Hamiltonian and Lagrangian Functions Related?
The hamilton function of a particle in two dimensions is given by H = (p\stackrel{2}{x})/2m + (p\stackrel{2}{y})/2m + apxpy + U(x,y) Obtain the Hamiltonian equations of motion. Find the corresponding Lagrange function and Lagrange equations. Would it be px = dH/dpy (of course it...- Shafikae
- Thread
- Functions Hamilton Lagrange
- Replies: 1
- Forum: Advanced Physics Homework Help
-
K
Deriving the canonical equations of Hamilton
As i know there are several diffrent way to derive the canonical equations. Some of them starts from a physical principle like Hamilton's principle or the Lagrange equations. But it can be derived also by simply make a Legendre transormation on the Lagrange function and then make...- kesgab
- Thread
- deriving Hamilton
- Replies: 1
- Forum: Classical Physics
-
K
Expected Value of the Hamilton operator
Homework Statement I have to calculate the expected value of the Hamilton operator (average energy) of a two, non interacting, identical particle system. Thus these particles can be bosons or fermions, but at the moment I just want to look at fermions. Homework Equations...- Karliski
- Thread
- Expected value Hamilton Operator Value
- Replies: 1
- Forum: Advanced Physics Homework Help
-
H
Need suggestion about Laplacian and Hamilton Operator
Hi, Someone has some suggestion about self-study book about "Laplacian" and "Hamilton Operator". Thanks -
B
Commutativity Equation Of Hamilton and Position Operators
How can we show \left[\hat{H},\hat{x}\right]=\frac{-i\hbar}{m} \hat{p_{x}} ?- buraqenigma
- Thread
- Hamilton Operators Position
- Replies: 7
- Forum: Advanced Physics Homework Help
-
D
Understanding the Relationship between Hamilton and Momentum Operators
why i\hbar(\partial/\partialt+i\Omega)=i\hbarexp(-i\Omegat)\partial/\partialtexp(i\Omegat)- dream_chaser
- Thread
- Hamilton Operators
- Replies: 2
- Forum: Quantum Physics
-
A
F1 Enthusiasts: Who's Better - Alonso or Hamilton?
hi all F1 enthusiasts(if there are some here), i would like yo know who ,according to you, is better, ALONSO Vs HAMILTON? my money is on Hamilton, Mclaren purposely didnt allow Hamilton to run the last flying lap(Monaco GP), when he still could have got another go. he was light on fuel, so...- ank_gl
- Thread
- Hamilton
- Replies: 61
- Forum: General Discussion
-
V
Is Lambda an Eigenvalue of A in the Cayley-Hamilton Theorem Proof?
i met a proof to cayley hamilton theorem and have some questions. It uses that lambda*I - A is invertible. But lambda is surely an eigenvalue of A and 1/(lamda*I - A) is not legit so how is it legal to use that.- vabamyyr
- Thread
- Hamilton Theorem
- Replies: 7
- Forum: Linear and Abstract Algebra
-
S
Hamilton nuclear reactor analysis
pleas interduce a site that contain hamilton nuclear reactor analysis books chapter problem solution tnx.- saeedsh
- Thread
- Analysis Hamilton Nuclear Nuclear reactor Reactor
- Replies: 5
- Forum: Nuclear Engineering
-
F
Can't get Hamilton and Lagrangian stuff
I'm really confused when using Hamilton and lagrangian equations, and have read loads of documents on it, but its not getting any clearer, I was hoping someone might be able to help me. Thanks in advance...- finchie_88
- Thread
- Hamilton Lagrangian
- Replies: 4
- Forum: Classical Physics
-
P
Help Needed in Hamilton for Physics Course - Tutor Wanted
Is there anyone in the Hamilton area who is willing to tutor me so I can pass my undergrad introductory physics course? I really need some serious help. Thanks, Physics DUD :cry:- PhysicsDud
- Thread
- Course Hamilton Physics Tutor
- Replies: 6
- Forum: STEM Academic Advising
-
E
How Does the Hamilton-Jacobi Equation Reveal Solutions Depending on Potential V?
Let be the S function being the action in physics S=S(x,y,z,t) satisfying the equation: \frac{dS}{dt}+(1/2m)(\nabla{S})^{2}+V(x,y,z,t)=0 where V is the potential is there any solution (exact) to it depending on V?- eljose
- Thread
- Hamilton Jacobi
- Replies: 6
- Forum: Differential Equations
-
Intermediate Dynamics Books for Lagrange, Hamilton & Canonical Transformations
Hello, I'm looking for a good Dynamics Book. I got Engineering Mechanics: Dynamics by Andrew Pytel and Jaan Kiusalaas, but it's fairly introductional, i also got Classical Mechanics by Goldstein, which is advanced. I am looking for intermediate level. I am looking mainly to learn the Lagrange... -
A
Problem: linear dep. of time in hamilton
Hello I am having a litte problem solving h=[ p^2 / (2m) ] + mAxt where m, A are constants. initial conditions: t=0, x=0, p= mv Supposedly sol this with Hamiltons principal function. A hint for start would be nice Thanks in Advance- Asle
- Thread
- Hamilton Linear Time
- Replies: 11
- Forum: Introductory Physics Homework Help
-
E
Strange Hamilton Jacobi equation
let be (dS/dt)+(gra(S))^2/2m+(LS)+V(x) where L is the Laplacian Operator and V is the potential...could it be considered as the Hamiltan Jacobi equation for a particle under a potential Vtotal=V(x)+(LS) where S is the action- eljose
- Thread
- Hamilton Jacobi Strange
- Replies: 1
- Forum: Classical Physics
-
S
Pendulum Using Lagrange And Hamilton
i have been given a problem involving a pendulum, where its support point is accelerating vertically upward. The period of the pendulum is required. Anybody have any idea how to start this one? is it not just 2pi(L/g-a)^1/2? -
M
How are the Riemann tensor of curvature and the Hamilton operator connected?
Does someone here knows something about how tensor of curvature (Riemann) and the hamilton operator associated with a particle are connected ? Makes this question sense ? Thanks- member 11137
- Thread
- Hamilton Riemann
- Replies: 2
- Forum: Special and General Relativity
-
M
Understanding the Hamilton Operator and its Matrix Representation
Certainly a simple question but I am lost; can the Hamilton operator of a particle be a matrix [H] ? If yes, must this matrix be self adjoint [H = h(i,j)] = [H = h(j,i)]*? And if yes: why or because of why ? Thanks- member 11137
- Thread
- Hamilton
- Replies: 24
- Forum: Quantum Physics
-
F
Hamiltonian and Lagrangian Mechanics: Online Resource
Does anyone know of a good online resource on Lagrangian and Hamiltonian mechanics?- franznietzsche
- Thread
- Hamilton Lagrange
- Replies: 2
- Forum: Classical Physics