MHB 10.3 Determine if A is in the span B

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Span
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Determine if $A=\begin{bmatrix}
1\\3\\2
\end{bmatrix}$ is in the span $B=\left\{\begin{bmatrix}
2\\1\\0
\end{bmatrix}
\cdot
\begin{bmatrix}
1\\1\\1
\end{bmatrix}\right\}$

ok I added A and B to this for the OP
but from examples it looks like this can be answered by scalors so if

$c_1\begin{bmatrix}
2\\1\\0
\end{bmatrix}
+
c_2\begin{bmatrix}
1\\1\\1
\end{bmatrix}=\begin{bmatrix}
1\\3\\2
\end{bmatrix}$
 
Physics news on Phys.org
Hi karush.

So you have
$$\begin{eqnarray}2c_1 &+& c_2 &=& 1 \\ c_1 &+& c_2 &=& 3 \\ {} & {} & c_2 &=& 2.\end{eqnarray}$$
If you substitute $c_2=2$ from the last equation into the first two equations, you get two different values for $c_1$. Hence the above set of equations is inconsistent (has no solutions) showing that $\mathbf A\notin\mathrm{span}B$.
 
Lets try this one... if $A=
\begin{bmatrix}
1\\3\\2
\end{bmatrix}$ is in the span $B=\left\{\begin{bmatrix}
2\\1\\0
\end{bmatrix}
\cdot
\begin{bmatrix}
1\\1\\1
\end{bmatrix}
\cdot
\begin{bmatrix}
0\\1\\1
\end{bmatrix}\right\}$
then
$\begin{array}{rrrrr}
2c_1 &+ c_2 & & =1 \\
c_1 &+ c_2 & +c_3 & =3 \\
& c_2 & +c_3 & =2
\end{array}$
Solving $c_1=1, c_2=−1, c_3=3$
so $A\in\mathrm{span}B$
 
Last edited:
You are missing some "+" signs, aren't you?

Yes, the definition of "span" requires that
$2c_1+ c_2= 1$
$c_1+ c_2+ c_3= 3$ and
$c_2+ c_3= 2$
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
27
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K