MHB 10.3 Determine if A is in the span B

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Span
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Determine if $A=\begin{bmatrix}
1\\3\\2
\end{bmatrix}$ is in the span $B=\left\{\begin{bmatrix}
2\\1\\0
\end{bmatrix}
\cdot
\begin{bmatrix}
1\\1\\1
\end{bmatrix}\right\}$

ok I added A and B to this for the OP
but from examples it looks like this can be answered by scalors so if

$c_1\begin{bmatrix}
2\\1\\0
\end{bmatrix}
+
c_2\begin{bmatrix}
1\\1\\1
\end{bmatrix}=\begin{bmatrix}
1\\3\\2
\end{bmatrix}$
 
Physics news on Phys.org
Hi karush.

So you have
$$\begin{eqnarray}2c_1 &+& c_2 &=& 1 \\ c_1 &+& c_2 &=& 3 \\ {} & {} & c_2 &=& 2.\end{eqnarray}$$
If you substitute $c_2=2$ from the last equation into the first two equations, you get two different values for $c_1$. Hence the above set of equations is inconsistent (has no solutions) showing that $\mathbf A\notin\mathrm{span}B$.
 
Lets try this one... if $A=
\begin{bmatrix}
1\\3\\2
\end{bmatrix}$ is in the span $B=\left\{\begin{bmatrix}
2\\1\\0
\end{bmatrix}
\cdot
\begin{bmatrix}
1\\1\\1
\end{bmatrix}
\cdot
\begin{bmatrix}
0\\1\\1
\end{bmatrix}\right\}$
then
$\begin{array}{rrrrr}
2c_1 &+ c_2 & & =1 \\
c_1 &+ c_2 & +c_3 & =3 \\
& c_2 & +c_3 & =2
\end{array}$
Solving $c_1=1, c_2=−1, c_3=3$
so $A\in\mathrm{span}B$
 
Last edited:
You are missing some "+" signs, aren't you?

Yes, the definition of "span" requires that
$2c_1+ c_2= 1$
$c_1+ c_2+ c_3= 3$ and
$c_2+ c_3= 2$
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top