MHB 10.3 Determine if A is in the span B

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Span
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Determine if $A=\begin{bmatrix}
1\\3\\2
\end{bmatrix}$ is in the span $B=\left\{\begin{bmatrix}
2\\1\\0
\end{bmatrix}
\cdot
\begin{bmatrix}
1\\1\\1
\end{bmatrix}\right\}$

ok I added A and B to this for the OP
but from examples it looks like this can be answered by scalors so if

$c_1\begin{bmatrix}
2\\1\\0
\end{bmatrix}
+
c_2\begin{bmatrix}
1\\1\\1
\end{bmatrix}=\begin{bmatrix}
1\\3\\2
\end{bmatrix}$
 
Physics news on Phys.org
Hi karush.

So you have
$$\begin{eqnarray}2c_1 &+& c_2 &=& 1 \\ c_1 &+& c_2 &=& 3 \\ {} & {} & c_2 &=& 2.\end{eqnarray}$$
If you substitute $c_2=2$ from the last equation into the first two equations, you get two different values for $c_1$. Hence the above set of equations is inconsistent (has no solutions) showing that $\mathbf A\notin\mathrm{span}B$.
 
Lets try this one... if $A=
\begin{bmatrix}
1\\3\\2
\end{bmatrix}$ is in the span $B=\left\{\begin{bmatrix}
2\\1\\0
\end{bmatrix}
\cdot
\begin{bmatrix}
1\\1\\1
\end{bmatrix}
\cdot
\begin{bmatrix}
0\\1\\1
\end{bmatrix}\right\}$
then
$\begin{array}{rrrrr}
2c_1 &+ c_2 & & =1 \\
c_1 &+ c_2 & +c_3 & =3 \\
& c_2 & +c_3 & =2
\end{array}$
Solving $c_1=1, c_2=−1, c_3=3$
so $A\in\mathrm{span}B$
 
Last edited:
You are missing some "+" signs, aren't you?

Yes, the definition of "span" requires that
$2c_1+ c_2= 1$
$c_1+ c_2+ c_3= 3$ and
$c_2+ c_3= 2$
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top