...The scaling of voltage and current with length is reaching its limits, since transistor gates have become too thin, affecting their structural integrity, and
currents are starting to leak.
Furthermore, thermal losses occur when you are putting several billions of transistors together on a small area and switching them on and off again several billion times per second. The faster we switch the transistors on and off, the more heat will be generated. Without proper cooling, they might fail and be destroyed. One implication of this is that a lower operating clock speed will generate less heat and ensure the longevity of the processor. Another severe drawback is that an increase in clock speed implies a voltage increase and there is a cubic dependency between this and the power consumption...
...The overwhelming benefit of multicores can be derived from the following reasoning: When cutting down the clock speed by 30%, the power is reduced to 35% of its original consumption, due the cubic dependency (0.7*0.7*0.7 ~ 0.35).
Yet, computing performance is also reduced by 30%. But when operating two compute cores running with 70% of the original clock speed, we have 140% of the original compute power using only 70% of the original power consumption (2 x 35%).