MHB 11.6.8 determine convergent or divergence by Ratio Test

Click For Summary
The discussion focuses on using the Ratio Test to determine the convergence or divergence of two series. For the first series, $$\sum_{n=1}^{\infty}\dfrac{(-2)^n}{n^2}$$, the limit calculation shows that it diverges since the limit approaches 2, which is greater than 1. The second series, $$\sum_{n=1}^{\infty} \frac{(2n)!}{9^n n!}$$, also diverges as the limit approaches infinity. Both series fail the convergence criteria of the Ratio Test, confirming their divergence. The Ratio Test is effectively applied to analyze the behavior of these series.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Use the Ratio Test to determine whether the series is convergent or divergent
$$\sum_{n=1}^{\infty}\dfrac{(-2)^n}{n^2}$$
If $\displaystyle\lim_{n \to \infty}
\left|\dfrac{a_{n+1}}{a_n}\right|=L>1
\textit{ or }
\left|\dfrac{a_{n+1}}{a_n}\right|=\infty
\textit{ then the series } \sum_{n=1}^{\infty}a_n \textit{ is divergent}$

ok I spent about half hour trying to do this but not sure what a is

also this one if can...

$$\sum_{n=1}^{\infty} \frac{(2n)!}{9^n n!}$$
 
Physics news on Phys.org
karush said:
Use the Ratio Test to determine whether the series is convergent or divergent
$$\sum_{n=1}^{\infty}\dfrac{(-2)^n}{n^2}$$
If $\displaystyle\lim_{n \to \infty}
\left|\dfrac{a_{n+1}}{a_n}\right|=L>1
\textit{ or }
\left|\dfrac{a_{n+1}}{a_n}\right|=\infty
\textit{ then the series } \sum_{n=1}^{\infty}a_n \textit{ is divergent}$

ok I spent about half hour trying to do this but not sure what a is

also this one if can...

$$\sum_{n=1}^{\infty} \frac{(2n)!}{9^n n!}$$

$a_{n+1} = \dfrac{(-2)^{n+1}}{(n+1)^2}$
$a_n = \dfrac{(-2)^n}{n^2}$

$\dfrac{a_{n+1}}{a_n} = \dfrac{(-2)^{n+1}}{(n+1)^2} \cdot \dfrac{n^2}{(-2)^n} = \dfrac{-2n^2}{(n+1)^2}$

$$\lim_{n \to \infty} \bigg|\dfrac{-2n^2}{(n+1)^2} \bigg| = \lim_{n \to \infty} \dfrac{2}{1 + \frac{2}{n} + \frac{1}{n^2}}$$

so ... what next?

-----------------------------------------------------------------------------

$a_{n+1} = \dfrac{[2(n+1)]!}{9^{n+1} \cdot (n+1)!}$

$a_n = \dfrac{(2n)!}{9^n \cdot n!}$$$\lim_{n \to \infty} \bigg|\dfrac{[2(n+1)]!}{9^{n+1} \cdot (n+1)!} \cdot \dfrac{9^n \cdot n!}{(2n)!} \bigg| = $$

$$\lim_{n \to \infty} \bigg|\dfrac{(2n+2)!}{9^{n+1} \cdot (n+1)!} \cdot \dfrac{9^n \cdot n!}{(2n)!} \bigg|$$

$$\lim_{n \to \infty} \bigg|\dfrac{(2n+2)(2n+1)}{9 \cdot (n+1)} \bigg|$$

now what ... ?
 
$\displaystyle\lim_{n \to \infty} \dfrac{2}{1 + \frac{2}{n} + \frac{1}{n^2}}=\dfrac{2}{1+0+0}=2$
so $L>1$ divergent.and$\displaystyle\lim_{n \to \infty} \bigg|\dfrac{(2n+2)(2n+1)}{9 \cdot (n+1)} \bigg|
=\bigg|\dfrac{2(n+1)(2n+1)}{9(n+1)}\bigg|=\dfrac{4n+2}{9}=\infty$
so $L=\infty$ divergent.
 
Last edited:
Mahalo much...:cool:
 

Similar threads