11.6.8 determine convergent or divergence by Ratio Test

Click For Summary
SUMMARY

The forum discussion focuses on using the Ratio Test to determine the convergence or divergence of two series: $$\sum_{n=1}^{\infty}\dfrac{(-2)^n}{n^2}$$ and $$\sum_{n=1}^{\infty} \frac{(2n)!}{9^n n!}$$. For the first series, the limit $$\lim_{n \to \infty} \left|\dfrac{a_{n+1}}{a_n}\right|$$ evaluates to 2, indicating divergence since L > 1. The second series also diverges as the limit approaches infinity, confirming that both series are divergent.

PREREQUISITES
  • Understanding of the Ratio Test for series convergence
  • Familiarity with factorial notation and limits
  • Basic knowledge of series and sequences in calculus
  • Ability to manipulate algebraic expressions involving limits
NEXT STEPS
  • Study the application of the Ratio Test in greater detail
  • Explore other convergence tests such as the Root Test and Comparison Test
  • Learn about series convergence criteria in advanced calculus
  • Practice solving various series problems using the Ratio Test
USEFUL FOR

Students and educators in calculus, mathematicians analyzing series convergence, and anyone seeking to deepen their understanding of convergence tests in mathematical analysis.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Use the Ratio Test to determine whether the series is convergent or divergent
$$\sum_{n=1}^{\infty}\dfrac{(-2)^n}{n^2}$$
If $\displaystyle\lim_{n \to \infty}
\left|\dfrac{a_{n+1}}{a_n}\right|=L>1
\textit{ or }
\left|\dfrac{a_{n+1}}{a_n}\right|=\infty
\textit{ then the series } \sum_{n=1}^{\infty}a_n \textit{ is divergent}$

ok I spent about half hour trying to do this but not sure what a is

also this one if can...

$$\sum_{n=1}^{\infty} \frac{(2n)!}{9^n n!}$$
 
Physics news on Phys.org
karush said:
Use the Ratio Test to determine whether the series is convergent or divergent
$$\sum_{n=1}^{\infty}\dfrac{(-2)^n}{n^2}$$
If $\displaystyle\lim_{n \to \infty}
\left|\dfrac{a_{n+1}}{a_n}\right|=L>1
\textit{ or }
\left|\dfrac{a_{n+1}}{a_n}\right|=\infty
\textit{ then the series } \sum_{n=1}^{\infty}a_n \textit{ is divergent}$

ok I spent about half hour trying to do this but not sure what a is

also this one if can...

$$\sum_{n=1}^{\infty} \frac{(2n)!}{9^n n!}$$

$a_{n+1} = \dfrac{(-2)^{n+1}}{(n+1)^2}$
$a_n = \dfrac{(-2)^n}{n^2}$

$\dfrac{a_{n+1}}{a_n} = \dfrac{(-2)^{n+1}}{(n+1)^2} \cdot \dfrac{n^2}{(-2)^n} = \dfrac{-2n^2}{(n+1)^2}$

$$\lim_{n \to \infty} \bigg|\dfrac{-2n^2}{(n+1)^2} \bigg| = \lim_{n \to \infty} \dfrac{2}{1 + \frac{2}{n} + \frac{1}{n^2}}$$

so ... what next?

-----------------------------------------------------------------------------

$a_{n+1} = \dfrac{[2(n+1)]!}{9^{n+1} \cdot (n+1)!}$

$a_n = \dfrac{(2n)!}{9^n \cdot n!}$$$\lim_{n \to \infty} \bigg|\dfrac{[2(n+1)]!}{9^{n+1} \cdot (n+1)!} \cdot \dfrac{9^n \cdot n!}{(2n)!} \bigg| = $$

$$\lim_{n \to \infty} \bigg|\dfrac{(2n+2)!}{9^{n+1} \cdot (n+1)!} \cdot \dfrac{9^n \cdot n!}{(2n)!} \bigg|$$

$$\lim_{n \to \infty} \bigg|\dfrac{(2n+2)(2n+1)}{9 \cdot (n+1)} \bigg|$$

now what ... ?
 
$\displaystyle\lim_{n \to \infty} \dfrac{2}{1 + \frac{2}{n} + \frac{1}{n^2}}=\dfrac{2}{1+0+0}=2$
so $L>1$ divergent.and$\displaystyle\lim_{n \to \infty} \bigg|\dfrac{(2n+2)(2n+1)}{9 \cdot (n+1)} \bigg|
=\bigg|\dfrac{2(n+1)(2n+1)}{9(n+1)}\bigg|=\dfrac{4n+2}{9}=\infty$
so $L=\infty$ divergent.
 
Last edited:
Mahalo much...:cool:
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K