12.6 linearly dependent or linearly independent?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Independent Linearly
Click For Summary
SUMMARY

The vectors \(v_1 = x^2 + 1\), \(v_2 = x + 2\), and \(v_3 = x^2 + 2x\) are linearly independent. This conclusion is reached by analyzing the system of equations derived from the linear combination \(c_1(x^2 + 1) + c_2(x + 2) + c_3(x^2 + 2x) = 0\). The resulting equations indicate that the only solution is \(c_1 = c_2 = c_3 = 0\), confirming their independence. The discussion also mentions the Wronskian as a method for determining linear independence, although it was not applied in this case.

PREREQUISITES
  • Understanding of linear algebra concepts, specifically linear independence and dependence
  • Familiarity with polynomial functions and their properties
  • Knowledge of solving systems of equations
  • Basic understanding of the Wronskian determinant
NEXT STEPS
  • Study the Wronskian determinant and its application in determining linear independence of functions
  • Explore advanced topics in linear algebra, such as vector spaces and basis
  • Practice solving systems of equations using matrix methods
  • Investigate the implications of linear dependence in higher-dimensional spaces
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, as well as educators looking for examples of linear independence in polynomial functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Are the vectors
$$v_1=x^2+1
,\quad v_2=x+2
,\quad v_3=x^2+2x$$
linearly dependent or linearly independent?
if
$$c_1(x^2+1)+c_2(x+2)+c_3(x^2+2x)=0$$
is the system
$$\begin{array}{rrrrr}
&c_1 & &c_3 = &0\\
& &c_2 &2c_3= &0\\
&c_1 &2c_2& = &0
\end{array}$$
I presume at this point observation can be made that this linear dependent
but also...
$$\left[ \begin{array}{ccc|c} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 2 & 0 & 0 \end{array} \right]
\sim
\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$
 
Last edited:
Physics news on Phys.org
With a set of functions, you normally use the Wronskian to determine linear independence.
 
"
I presume at this point observation can be made that this linear dependent"
Why would you presume that?

Perhaps it is just the way I learned systems of equations but I never want to change to matrices to solve systems of equations!

To determine whether or not v_1= x^2+ 1, v_2= x+ 2, and v_3= x^2+ 2x are independent or dependent we need to decide if there exist numbers, a, b, and c, no all 0, such that av_1+ bv_2+ cv_3= a(x^2+ 1)+ b(x+ 2)+ c(x^2+ 2x)= (a+ c)x^2+ (b+ 2c)x+ (a+ 2b)= 0.

In order that a polynomial be 0 for all x, all coefficients must be 0 so we must have
a+ c= 0
b+ 2c= 0
a+ 2b= 0

From the first equation c= -a so the second equation can be written as b+ 2(-a)= b- 2a= 0. Then b= 2a so the third equation is a+ 2(2a)= 5a= 0. a= 0 so b= 2(0)= 0 and c= -0= 0. The only solution is a= b= c= 0 so the vectors are independent.
 
Ackbach said:
With a set of functions, you normally use the Wronskian to determine linear independence.

ok we haven't done that yet
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K