12.6 linearly dependent or linearly independent?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Independent Linearly
Click For Summary

Discussion Overview

The discussion revolves around determining whether the vectors \(v_1 = x^2 + 1\), \(v_2 = x + 2\), and \(v_3 = x^2 + 2x\) are linearly dependent or independent. Participants explore various methods for assessing linear independence, including the use of systems of equations and the Wronskian.

Discussion Character

  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant suggests that the vectors might be linearly dependent based on their observations and manipulations of the system of equations.
  • Another participant proposes using the Wronskian as a standard method for determining linear independence in the context of functions.
  • A third participant challenges the presumption of linear dependence, arguing for a detailed examination of the coefficients in the polynomial formed by a linear combination of the vectors.
  • This participant derives a system of equations from the polynomial and concludes that the only solution is the trivial one, indicating that the vectors are independent.
  • There is a reiteration of the Wronskian method, indicating that it has not yet been covered in their discussions.

Areas of Agreement / Disagreement

Participants express differing views on the linear dependence or independence of the vectors, with some supporting the idea of dependence and others arguing for independence based on their calculations. The discussion remains unresolved as multiple perspectives are presented.

Contextual Notes

Participants reference different methods for determining linear independence, indicating a potential gap in shared knowledge about the Wronskian and its application in this context.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Are the vectors
$$v_1=x^2+1
,\quad v_2=x+2
,\quad v_3=x^2+2x$$
linearly dependent or linearly independent?
if
$$c_1(x^2+1)+c_2(x+2)+c_3(x^2+2x)=0$$
is the system
$$\begin{array}{rrrrr}
&c_1 & &c_3 = &0\\
& &c_2 &2c_3= &0\\
&c_1 &2c_2& = &0
\end{array}$$
I presume at this point observation can be made that this linear dependent
but also...
$$\left[ \begin{array}{ccc|c} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 1 & 2 & 0 & 0 \end{array} \right]
\sim
\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$
 
Last edited:
Physics news on Phys.org
With a set of functions, you normally use the Wronskian to determine linear independence.
 
"
I presume at this point observation can be made that this linear dependent"
Why would you presume that?

Perhaps it is just the way I learned systems of equations but I never want to change to matrices to solve systems of equations!

To determine whether or not v_1= x^2+ 1, v_2= x+ 2, and v_3= x^2+ 2x are independent or dependent we need to decide if there exist numbers, a, b, and c, no all 0, such that av_1+ bv_2+ cv_3= a(x^2+ 1)+ b(x+ 2)+ c(x^2+ 2x)= (a+ c)x^2+ (b+ 2c)x+ (a+ 2b)= 0.

In order that a polynomial be 0 for all x, all coefficients must be 0 so we must have
a+ c= 0
b+ 2c= 0
a+ 2b= 0

From the first equation c= -a so the second equation can be written as b+ 2(-a)= b- 2a= 0. Then b= 2a so the third equation is a+ 2(2a)= 5a= 0. a= 0 so b= 2(0)= 0 and c= -0= 0. The only solution is a= b= c= 0 so the vectors are independent.
 
Ackbach said:
With a set of functions, you normally use the Wronskian to determine linear independence.

ok we haven't done that yet
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K