17.7.07 other orders usually work well and are occasionally easier to evaluate

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Work
Click For Summary
SUMMARY

The discussion focuses on evaluating the integral in cylindrical coordinates, specifically the integral dV = ∫₀²π ∫₀³ ∫₀^{z/3} r³ dr dz dθ, which results in 3π/10. The participants clarify that changing the order of integration does not imply converting from cylindrical to Cartesian coordinates. Instead, they emphasize the importance of understanding the limits of integration and the integrand's behavior. The final evaluation confirms the book's answer of 3π/10.

PREREQUISITES
  • Cylindrical coordinates and their applications in integration
  • Fundamental theorem of calculus for evaluating definite integrals
  • Understanding of multiple integrals and their limits
  • Basic knowledge of integration techniques, including substitution
NEXT STEPS
  • Study the properties of cylindrical coordinates in multivariable calculus
  • Learn about changing the order of integration in multiple integrals
  • Explore advanced integration techniques, such as Fubini's theorem
  • Practice evaluating integrals in different coordinate systems, including Cartesian and spherical coordinates
USEFUL FOR

Students and educators in calculus, mathematicians focusing on multivariable calculus, and anyone involved in advanced integration techniques in cylindrical coordinates.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
The integrals we have seen so far suggest that there are preferred orders of integration for cylindricsl coordinates, but other orders usually work well and are occasionally easier to evaluate. Evaluate the integral

\begin{align*}\displaystyle
dV&=\int_{0}^{2\pi}\int_{0}^{3}\int_{0}^{z/3}r^3 \, dr \, dz \, d\theta\\
\\
&=\color{red}{\frac{3\pi}{10}}
\end{align*}

ok I tried some rearrange but it just got worse
I would presume this is converting $r^3$ to rectangular coordinates
red is book answer
 
Physics news on Phys.org
karush said:
The integrals we have seen so far suggest that there are preferred orders of integration for cylindricsl coordinates, but other orders usually work well and are occasionally easier to evaluate. Evaluate the integral

\begin{align*}\displaystyle
dV&=\int_{0}^{2\pi}\int_{0}^{3}\int_{0}^{z/3}r^3 \, dr \, dz \, d\theta\\
\\
&=\color{red}{\frac{3\pi}{10}}
\end{align*}

ok I tried some rearrange but it just got worse
I would presume this is converting $r^3$ to rectangular coordinates
red is book answer
First, because neither the integrand nor the limits of the other two integrals involve $\theta$ we can do that separately:
$\int_0^{2\pi} d\theta= 2\pi$
so that is simply
$dV= 2\pi \int_0^3 \int_0^{z/3} r^3 dr dz$
The integral of $r^3$ is $\frac{r^4}{4}$ and, evaluated between 0 and z/3, gives $\frac{z^4}{324}$. Integrating $\int_0^3 \frac{z^4}{324} dz= \left.\frac{z^5}{1620}\right|_0^3= \frac{243}{1620}= \frac{3}{20}$. Multiplying by $2\pi$ from the first integral that is $\frac{3\pi}{10}$.

"Changing the order of integration" does NOT mean "changing form cylindrical to Cartesian coordinates". Here, since, again, we could do the $\theta$ integral separately, we are looking at $\int_0^3\int_0^{z/3} r^3 drdz$ That means that we are letting z go from 0 to 3 and, for each z, letting r go from 0 to $z^3$. We can visualize that as the region under the cone $r= z^3$ but inside the cylinder r= 27. We could also cover that region by taking r from 0 to 27 and, for each r, z going from $\sqrt[3]{r}= r^{1/3}$ to 3:
$\int_0^{27} \int_{r^{1/3}}^3 r^3dzdr$.
 
before I put in a homework pdf I have

$\tiny{244.15.7.7}$
$\textsf{Changing the Order of Integration In Cylindrical Coordinates}$
\begin{align*}\displaystyle
dV&=\int_{0}^{2\pi}\int_{0}^{3}\int_{0}^{z/3}r^3 \, dr \, dz \, d\theta\\
\end{align*}
$\textit{First, because neither the integrand}$
$\textit{nor the limits of the other two integrals involve $\theta$}$
$\textit{we can do that separately:}$
$$\displaystyle\int_0^{2\pi} d\theta= 2\pi$$
$\textit{so that is simply}$
$$\displaystyle dV= 2\pi \int_0^3 \int_0^{z/3} r^3 dr \, dz$$
$\textit{Then we can proceed with:}$
\begin{align*}\displaystyle
dV&= 2\pi\int_0^3
\biggr[\frac{r^4}{4} \biggr]_0^{z/3} dr \, dz \\
&=\int_0^3 \frac{z^4}{324} dz= \biggr[\frac{z^5}{1620}\biggr]_0^3= \frac{243}{1620}= \frac{3}{20}\\
&=2\pi \biggr[\frac{3}{20} \biggr]
=\color{red}{\frac{3\pi}{10}}
\end{align*}
 

Similar threads

Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K