MHB 17.7.07 other orders usually work well and are occasionally easier to evaluate

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Work
Click For Summary
The discussion focuses on evaluating a triple integral in cylindrical coordinates, demonstrating that preferred orders of integration exist but other orders can also be effective. The integral is simplified by separating the theta component, resulting in a factor of 2π. The integration of r^3 from 0 to z/3 yields z^4/324, which is then integrated from 0 to 3 to produce a final result of 3/20. Multiplying by 2π confirms the book's answer of 3π/10. The conversation clarifies that changing the order of integration does not imply converting between coordinate systems.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
The integrals we have seen so far suggest that there are preferred orders of integration for cylindricsl coordinates, but other orders usually work well and are occasionally easier to evaluate. Evaluate the integral

\begin{align*}\displaystyle
dV&=\int_{0}^{2\pi}\int_{0}^{3}\int_{0}^{z/3}r^3 \, dr \, dz \, d\theta\\
\\
&=\color{red}{\frac{3\pi}{10}}
\end{align*}

ok I tried some rearrange but it just got worse
I would presume this is converting $r^3$ to rectangular coordinates
red is book answer
 
Physics news on Phys.org
karush said:
The integrals we have seen so far suggest that there are preferred orders of integration for cylindricsl coordinates, but other orders usually work well and are occasionally easier to evaluate. Evaluate the integral

\begin{align*}\displaystyle
dV&=\int_{0}^{2\pi}\int_{0}^{3}\int_{0}^{z/3}r^3 \, dr \, dz \, d\theta\\
\\
&=\color{red}{\frac{3\pi}{10}}
\end{align*}

ok I tried some rearrange but it just got worse
I would presume this is converting $r^3$ to rectangular coordinates
red is book answer
First, because neither the integrand nor the limits of the other two integrals involve $\theta$ we can do that separately:
$\int_0^{2\pi} d\theta= 2\pi$
so that is simply
$dV= 2\pi \int_0^3 \int_0^{z/3} r^3 dr dz$
The integral of $r^3$ is $\frac{r^4}{4}$ and, evaluated between 0 and z/3, gives $\frac{z^4}{324}$. Integrating $\int_0^3 \frac{z^4}{324} dz= \left.\frac{z^5}{1620}\right|_0^3= \frac{243}{1620}= \frac{3}{20}$. Multiplying by $2\pi$ from the first integral that is $\frac{3\pi}{10}$.

"Changing the order of integration" does NOT mean "changing form cylindrical to Cartesian coordinates". Here, since, again, we could do the $\theta$ integral separately, we are looking at $\int_0^3\int_0^{z/3} r^3 drdz$ That means that we are letting z go from 0 to 3 and, for each z, letting r go from 0 to $z^3$. We can visualize that as the region under the cone $r= z^3$ but inside the cylinder r= 27. We could also cover that region by taking r from 0 to 27 and, for each r, z going from $\sqrt[3]{r}= r^{1/3}$ to 3:
$\int_0^{27} \int_{r^{1/3}}^3 r^3dzdr$.
 
before I put in a homework pdf I have

$\tiny{244.15.7.7}$
$\textsf{Changing the Order of Integration In Cylindrical Coordinates}$
\begin{align*}\displaystyle
dV&=\int_{0}^{2\pi}\int_{0}^{3}\int_{0}^{z/3}r^3 \, dr \, dz \, d\theta\\
\end{align*}
$\textit{First, because neither the integrand}$
$\textit{nor the limits of the other two integrals involve $\theta$}$
$\textit{we can do that separately:}$
$$\displaystyle\int_0^{2\pi} d\theta= 2\pi$$
$\textit{so that is simply}$
$$\displaystyle dV= 2\pi \int_0^3 \int_0^{z/3} r^3 dr \, dz$$
$\textit{Then we can proceed with:}$
\begin{align*}\displaystyle
dV&= 2\pi\int_0^3
\biggr[\frac{r^4}{4} \biggr]_0^{z/3} dr \, dz \\
&=\int_0^3 \frac{z^4}{324} dz= \biggr[\frac{z^5}{1620}\biggr]_0^3= \frac{243}{1620}= \frac{3}{20}\\
&=2\pi \biggr[\frac{3}{20} \biggr]
=\color{red}{\frac{3\pi}{10}}
\end{align*}
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K