MHB 1st Derivative of Cauchy Integral formula

Click For Summary
SUMMARY

The discussion focuses on deriving the first derivative of a complex function using the Cauchy Integral Formula. The participants analyze the expression for the first derivative, specifically the term involving the second integral. The key equation discussed is the limit definition of the derivative, which is expressed as a difference of two integrals. The clarification provided by a participant highlights the importance of the term involving \( f(z_0) \) in the second integral, leading to a better understanding of the derivation process.

PREREQUISITES
  • Understanding of complex analysis and the Cauchy Integral Formula.
  • Familiarity with contour integration techniques.
  • Knowledge of limits and derivatives in the context of complex functions.
  • Ability to manipulate integrals and expressions involving complex variables.
NEXT STEPS
  • Study the Cauchy Integral Formula in detail, focusing on its applications in complex analysis.
  • Learn about the derivation of higher-order derivatives using complex integrals.
  • Explore contour integration techniques and their significance in evaluating complex integrals.
  • Investigate the implications of the first derivative in complex function theory and its applications.
USEFUL FOR

Mathematicians, students of complex analysis, and anyone interested in advanced calculus and the applications of the Cauchy Integral Formula in deriving derivatives of complex functions.

ognik
Messages
626
Reaction score
2
Hi - I know the final result for the n'th derivative, I am looking though at getting an expression for the 1st derivative of f(z).

From $ f({z}_{0}) = \frac{1}{2\pi i} \oint_{c} \frac{f(z)}{z - {z}_{0}}dz $ we get

$ \frac{f({z}_{0} + \delta {z}_{0}) -{f({z}_{0}}) }{\delta {z}_{0}} =
\frac{1}{2\pi i \delta {z}_{0} } (\oint_{c} \frac{f(z)}{z - {z}_{0} - \delta {z}_{0} } dz - \oint_{c} \frac{f({z}_{0})}{z - {z}_{0}}dz ) $

Where does the 2nd integral on the right come from?
 
Physics news on Phys.org
ognik said:
Hi - I know the final result for the n'th derivative, I am looking though at getting an expression for the 1st derivative of f(z).

From $ f({z}_{0}) = \frac{1}{2\pi i} \oint_{c} \frac{f(z)}{z - {z}_{0}}dz $ we get

$ \frac{f({z}_{0} + \delta {z}_{0}) -{f({z}_{0}}) }{\delta {z}_{0}} =
\frac{1}{2\pi i \delta {z}_{0} } (\oint_{c} \frac{f(z)}{z - {z}_{0} - \delta {z}_{0} } dz - \oint_{c} \frac{f({z}_{0})}{z - {z}_{0}}dz ) $

Where does the 2nd integral on the right come from?

I think the 2nd integral on the right should just be a copy of your original expression, right? That is, you should have
$$ \frac{f({z}_{0} + \delta {z}_{0}) -{f({z}_{0}}) }{\delta {z}_{0}} =
\frac{1}{2\pi i \delta {z}_{0} } \left(\oint_{c} \frac{f(z)}{z - {z}_{0} - \delta {z}_{0} } dz - \oint_{c} \frac{f({z})}{z - {z}_{0}}dz \right). $$
 
It's not quite the same, it has $ f({z}_{o}) $ on top instead of $ f({z}) $ and also the $\delta {z}_{o} $ in the divisor in front.

Saying that told me what I was missing (and also what you were saying), it is of course the $ - f({z}_{o}) $ part of the expression. Thanks Ackbach, got it now.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 2 ·
Replies
2
Views
972
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K