MHB 2.6 Calculate the average velocity of the car in different time interval

Click For Summary
The discussion focuses on calculating the average velocity of a car using the equation $x(t) = 1.50(t)^2 - 0.50(t)^3$. The average velocity formula $\bar{v} = \dfrac{\Delta x}{\Delta t}$ is applied with specific time intervals, particularly from $t_1 = 0$ to $t_2 = 2$. The calculations show that the average velocity is $2 \, m/s$ for the given interval. There is a correction noted regarding the units, emphasizing that they should be in meters per second, not meters per second squared. The thread highlights the importance of accurate calculations in physics homework.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 9199

OK I just had time to post and hopefully ok but still typos maybe
the graph was done in Deimos wanted to try tikx but not sure about the polynomial

trying to as many physics homework before classes start on Aug 26

Mahalo
 

Attachments

  • cp_2_6.PNG
    cp_2_6.PNG
    8.8 KB · Views: 142
Mathematics news on Phys.org
$x(t) = at^2-bt^3$

$\bar{v} = \dfrac{\Delta x}{\Delta t} = \dfrac{x(t_2)-x(t_1)}{t_2-t_1}$

units will be in $m/s$, not $m/s^2$ ... try again
 
skeeter said:
$x(t) = at^2-bt^3$

$\bar{v} = \dfrac{\Delta x}{\Delta t} = \dfrac{x(t_2)-x(t_1)}{t_2-t_1}$

units will be in $m/s$, not $m/s^2$ ... try again
$x(t)=1.50(t)^2-0.50(t)^3$

$\bar{v} = \dfrac{\Delta x}{\Delta t} = \dfrac{x(t_2)-x(t_1)}{t_2-t_1}$
so if $t_2=2$ and $t_1=0$ then

$\bar{v}=\dfrac{x(2)-x(0)}{2-0}=\dfrac{1.50(2)^2-0.50(2)^3-0}{2}=\dfrac{6-4}{2}=2\, m/s$
 
Last edited:
karush said:
$x(t)=1.50(t)^2-0.50(t)^3$

$\bar{v} = \dfrac{\Delta x}{\Delta t} = \dfrac{x(t_2)-x(t_1)}{t_2-t_1}$
so if $t_2=2$ and $t_1=0$ then

$\bar{v}=\dfrac{x(2)-x(0)}{2-0}=\dfrac{1.50(2)^2-0.50(2)^3-0}{2}=\dfrac{6-4}{2}=2\, m/s$
$\dfrac{6-4}{2} = \dfrac{2}{2} = 1 \, m/s$