MHB 2.6 Calculate the average velocity of the car in different time interval

Click For Summary
The discussion focuses on calculating the average velocity of a car using the equation $x(t) = 1.50(t)^2 - 0.50(t)^3$. The average velocity formula $\bar{v} = \dfrac{\Delta x}{\Delta t}$ is applied with specific time intervals, particularly from $t_1 = 0$ to $t_2 = 2$. The calculations show that the average velocity is $2 \, m/s$ for the given interval. There is a correction noted regarding the units, emphasizing that they should be in meters per second, not meters per second squared. The thread highlights the importance of accurate calculations in physics homework.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 9199

OK I just had time to post and hopefully ok but still typos maybe
the graph was done in Deimos wanted to try tikx but not sure about the polynomial

trying to as many physics homework before classes start on Aug 26

Mahalo
 

Attachments

  • cp_2_6.PNG
    cp_2_6.PNG
    8.8 KB · Views: 151
Mathematics news on Phys.org
$x(t) = at^2-bt^3$

$\bar{v} = \dfrac{\Delta x}{\Delta t} = \dfrac{x(t_2)-x(t_1)}{t_2-t_1}$

units will be in $m/s$, not $m/s^2$ ... try again
 
skeeter said:
$x(t) = at^2-bt^3$

$\bar{v} = \dfrac{\Delta x}{\Delta t} = \dfrac{x(t_2)-x(t_1)}{t_2-t_1}$

units will be in $m/s$, not $m/s^2$ ... try again
$x(t)=1.50(t)^2-0.50(t)^3$

$\bar{v} = \dfrac{\Delta x}{\Delta t} = \dfrac{x(t_2)-x(t_1)}{t_2-t_1}$
so if $t_2=2$ and $t_1=0$ then

$\bar{v}=\dfrac{x(2)-x(0)}{2-0}=\dfrac{1.50(2)^2-0.50(2)^3-0}{2}=\dfrac{6-4}{2}=2\, m/s$
 
Last edited:
karush said:
$x(t)=1.50(t)^2-0.50(t)^3$

$\bar{v} = \dfrac{\Delta x}{\Delta t} = \dfrac{x(t_2)-x(t_1)}{t_2-t_1}$
so if $t_2=2$ and $t_1=0$ then

$\bar{v}=\dfrac{x(2)-x(0)}{2-0}=\dfrac{1.50(2)^2-0.50(2)^3-0}{2}=\dfrac{6-4}{2}=2\, m/s$
$\dfrac{6-4}{2} = \dfrac{2}{2} = 1 \, m/s$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
Replies
5
Views
2K
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
165
Views
7K
  • · Replies 4 ·
Replies
4
Views
7K
  • · Replies 1 ·
Replies
1
Views
9K