MHB 2.6 Calculate the average velocity of the car in different time interval

AI Thread Summary
The discussion focuses on calculating the average velocity of a car using the equation $x(t) = 1.50(t)^2 - 0.50(t)^3$. The average velocity formula $\bar{v} = \dfrac{\Delta x}{\Delta t}$ is applied with specific time intervals, particularly from $t_1 = 0$ to $t_2 = 2$. The calculations show that the average velocity is $2 \, m/s$ for the given interval. There is a correction noted regarding the units, emphasizing that they should be in meters per second, not meters per second squared. The thread highlights the importance of accurate calculations in physics homework.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 9199

OK I just had time to post and hopefully ok but still typos maybe
the graph was done in Deimos wanted to try tikx but not sure about the polynomial

trying to as many physics homework before classes start on Aug 26

Mahalo
 

Attachments

  • cp_2_6.PNG
    cp_2_6.PNG
    8.8 KB · Views: 139
Mathematics news on Phys.org
$x(t) = at^2-bt^3$

$\bar{v} = \dfrac{\Delta x}{\Delta t} = \dfrac{x(t_2)-x(t_1)}{t_2-t_1}$

units will be in $m/s$, not $m/s^2$ ... try again
 
skeeter said:
$x(t) = at^2-bt^3$

$\bar{v} = \dfrac{\Delta x}{\Delta t} = \dfrac{x(t_2)-x(t_1)}{t_2-t_1}$

units will be in $m/s$, not $m/s^2$ ... try again
$x(t)=1.50(t)^2-0.50(t)^3$

$\bar{v} = \dfrac{\Delta x}{\Delta t} = \dfrac{x(t_2)-x(t_1)}{t_2-t_1}$
so if $t_2=2$ and $t_1=0$ then

$\bar{v}=\dfrac{x(2)-x(0)}{2-0}=\dfrac{1.50(2)^2-0.50(2)^3-0}{2}=\dfrac{6-4}{2}=2\, m/s$
 
Last edited:
karush said:
$x(t)=1.50(t)^2-0.50(t)^3$

$\bar{v} = \dfrac{\Delta x}{\Delta t} = \dfrac{x(t_2)-x(t_1)}{t_2-t_1}$
so if $t_2=2$ and $t_1=0$ then

$\bar{v}=\dfrac{x(2)-x(0)}{2-0}=\dfrac{1.50(2)^2-0.50(2)^3-0}{2}=\dfrac{6-4}{2}=2\, m/s$
$\dfrac{6-4}{2} = \dfrac{2}{2} = 1 \, m/s$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top