MHB 206.11.3.27 first three nonzero terms of the Taylor series

Click For Summary
The discussion focuses on finding the first three nonzero terms of the Taylor series for the sine function at \( a = \frac{3\pi}{4} \). The derivatives of the sine function were calculated, yielding values for \( f^0(a) \), \( f^1(a) \), and \( f^2(a) \). The final approximation for the sine function is expressed as \( \sin(x) \approx \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}(x - \frac{3\pi}{4}) - \frac{\sqrt{2}}{4}(x - \frac{3\pi}{4})^2 \). There was a correction noted regarding the initial calculations of the derivatives, but the final expression was deemed correct. The thread emphasizes the importance of accuracy in derivative calculations for Taylor series expansions.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{a. Find the first three nonzero terms
of the Taylor series $a=\frac{3\pi}{4}$}$
\begin{align}
\displaystyle
f^0(x)&=\sin{x} &\therefore \ \ f^0(a)&=\sin{x} \\
f^1(x)&=\cos{x} &\therefore \ \ f^1(a)&= -\frac{\sqrt{2}}{2}\\
f^2(x)&=- \sin{x}&\therefore \ \ f^2(a)&=\frac{\sqrt{2}}{2} \\
\end{align}

$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&
\approx\frac{\frac{\sqrt{2}}{2}}{0!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{0}+\frac{- \frac{\sqrt{2}}{2}}{1!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{1}+\frac{- \frac{\sqrt{2}}{2}}{2!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{2}\\
\sin{\left (x \right )}&\approx
\frac{\sqrt{2}}{2}
- \frac{\sqrt{2}}{2}\left(x- \frac{3 \pi}{4}\right)
- \frac{\sqrt{2}}{4}\left(x- \frac{3 \pi}{4}\right)^{2}
\end{align}
 
Last edited:
Physics news on Phys.org
Re: 206.11.3.27 first three nonzero terms of the Taylor serie

karush said:
$\textsf{a. Find the first three nonzero terms
of the Taylor series $a=\frac{3\pi}{4}$}$
\begin{align}
\displaystyle
f^0(x)&=\sin{x} &\therefore \ \ f^0(a)&=\sin{x} \\
f^1(x)&=\cos{x} &\therefore \ \ f^1(a)&= -\frac{\sqrt{2}}{2}\\
f^2(x)&=- \sin{x}&\therefore \ \ f^2(a)&=\frac{\sqrt{2}}{2} \\
\end{align}

$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&
\approx\frac{\frac{\sqrt{2}}{2}}{0!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{0}+\frac{- \frac{\sqrt{2}}{2}}{1!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{1}+\frac{- \frac{\sqrt{2}}{2}}{2!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{2}\\
\sin{\left (x \right )}&\approx
\frac{\sqrt{2}}{2}
- \frac{\sqrt{2}}{2}\left(x- \frac{3 \pi}{4}\right)
- \frac{\sqrt{2}}{4}\left(x- \frac{3 \pi}{4}\right)^{2}
\end{align}

Well you have calculated $\displaystyle \begin{align*} f^{(0)}(a) \end{align*}$ and $\displaystyle \begin{align*} f^{(2)}(a) \end{align*}$ incorrectly, but somehow written them correctly in the final answer...
 
Re: 206.11.3.27 first three nonzero terms of the Taylor serie

$\textsf{a. Find the first three nonzero terms
of the Taylor series $a=\frac{3\pi}{4}$}$
\begin{align}
\displaystyle
f^0(x)&=\sin{x} &\therefore \ \ f^0(a)&=\frac{\sqrt{2}}{2} \\
f^1(x)&=\cos{x} &\therefore \ \ f^1(a)&= -\frac{\sqrt{2}}{2}\\
f^2(x)&=- \sin{x}&\therefore \ \ f^2(a)&=-\frac{\sqrt{2}}{2} \\
\end{align}

$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&
\approx\frac{\frac{\sqrt{2}}{2}}{0!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{0}+\frac{- \frac{\sqrt{2}}{2}}{1!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{1}+\frac{- \frac{\sqrt{2}}{2}}{2!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{2}\\
\sin{\left (x \right )}&\approx
\frac{\sqrt{2}}{2}
- \frac{\sqrt{2}}{2}\left(x- \frac{3 \pi}{4}\right)
- \frac{\sqrt{2}}{4}\left(x- \frac{3 \pi}{4}\right)^{2}
\end{align}
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K