206.11.3.27 first three nonzero terms of the Taylor series

Click For Summary
SUMMARY

The forum discussion focuses on calculating the first three nonzero terms of the Taylor series for the function \( \sin{x} \) around the point \( a = \frac{3\pi}{4} \). The derivatives evaluated at this point are \( f^0(a) = \frac{\sqrt{2}}{2} \), \( f^1(a) = -\frac{\sqrt{2}}{2} \), and \( f^2(a) = -\frac{\sqrt{2}}{2} \). The resulting Taylor series approximation is \( \sin{x} \approx \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}(x - \frac{3\pi}{4}) - \frac{\sqrt{2}}{4}(x - \frac{3\pi}{4})^2 \).

PREREQUISITES
  • Understanding of Taylor series expansion
  • Knowledge of trigonometric functions, specifically sine and cosine
  • Familiarity with calculus concepts such as derivatives
  • Ability to perform algebraic manipulation of polynomial expressions
NEXT STEPS
  • Study the derivation of Taylor series for other trigonometric functions
  • Learn about the convergence properties of Taylor series
  • Explore applications of Taylor series in numerical methods
  • Investigate the use of Taylor series in solving differential equations
USEFUL FOR

Students of calculus, mathematicians, and anyone interested in understanding the application of Taylor series in approximating functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{a. Find the first three nonzero terms
of the Taylor series $a=\frac{3\pi}{4}$}$
\begin{align}
\displaystyle
f^0(x)&=\sin{x} &\therefore \ \ f^0(a)&=\sin{x} \\
f^1(x)&=\cos{x} &\therefore \ \ f^1(a)&= -\frac{\sqrt{2}}{2}\\
f^2(x)&=- \sin{x}&\therefore \ \ f^2(a)&=\frac{\sqrt{2}}{2} \\
\end{align}

$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&
\approx\frac{\frac{\sqrt{2}}{2}}{0!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{0}+\frac{- \frac{\sqrt{2}}{2}}{1!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{1}+\frac{- \frac{\sqrt{2}}{2}}{2!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{2}\\
\sin{\left (x \right )}&\approx
\frac{\sqrt{2}}{2}
- \frac{\sqrt{2}}{2}\left(x- \frac{3 \pi}{4}\right)
- \frac{\sqrt{2}}{4}\left(x- \frac{3 \pi}{4}\right)^{2}
\end{align}
 
Last edited:
Physics news on Phys.org
Re: 206.11.3.27 first three nonzero terms of the Taylor serie

karush said:
$\textsf{a. Find the first three nonzero terms
of the Taylor series $a=\frac{3\pi}{4}$}$
\begin{align}
\displaystyle
f^0(x)&=\sin{x} &\therefore \ \ f^0(a)&=\sin{x} \\
f^1(x)&=\cos{x} &\therefore \ \ f^1(a)&= -\frac{\sqrt{2}}{2}\\
f^2(x)&=- \sin{x}&\therefore \ \ f^2(a)&=\frac{\sqrt{2}}{2} \\
\end{align}

$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&
\approx\frac{\frac{\sqrt{2}}{2}}{0!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{0}+\frac{- \frac{\sqrt{2}}{2}}{1!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{1}+\frac{- \frac{\sqrt{2}}{2}}{2!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{2}\\
\sin{\left (x \right )}&\approx
\frac{\sqrt{2}}{2}
- \frac{\sqrt{2}}{2}\left(x- \frac{3 \pi}{4}\right)
- \frac{\sqrt{2}}{4}\left(x- \frac{3 \pi}{4}\right)^{2}
\end{align}

Well you have calculated $\displaystyle \begin{align*} f^{(0)}(a) \end{align*}$ and $\displaystyle \begin{align*} f^{(2)}(a) \end{align*}$ incorrectly, but somehow written them correctly in the final answer...
 
Re: 206.11.3.27 first three nonzero terms of the Taylor serie

$\textsf{a. Find the first three nonzero terms
of the Taylor series $a=\frac{3\pi}{4}$}$
\begin{align}
\displaystyle
f^0(x)&=\sin{x} &\therefore \ \ f^0(a)&=\frac{\sqrt{2}}{2} \\
f^1(x)&=\cos{x} &\therefore \ \ f^1(a)&= -\frac{\sqrt{2}}{2}\\
f^2(x)&=- \sin{x}&\therefore \ \ f^2(a)&=-\frac{\sqrt{2}}{2} \\
\end{align}

$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&
\approx\frac{\frac{\sqrt{2}}{2}}{0!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{0}+\frac{- \frac{\sqrt{2}}{2}}{1!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{1}+\frac{- \frac{\sqrt{2}}{2}}{2!}\left(x-\left(\frac{3 \pi}{4}\right)\right)^{2}\\
\sin{\left (x \right )}&\approx
\frac{\sqrt{2}}{2}
- \frac{\sqrt{2}}{2}\left(x- \frac{3 \pi}{4}\right)
- \frac{\sqrt{2}}{4}\left(x- \frac{3 \pi}{4}\right)^{2}
\end{align}
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K