242.7x.01 d/dx of inverse equation

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Inverse
Click For Summary
SUMMARY

The discussion focuses on calculating the derivative of the inverse function, specifically \( \frac{df^{-1}}{dx} \) at \( f(a) \) where \( a = 3 \). The function defined is \( f(x) = x^3 - 6x^2 - 3 \). The derivative is computed using the formula \( [f^{-1}]'(a) = \frac{1}{f'\left(f^{-1}(a)\right)} \). The final result for \( [f^{-1}]'(3) \) is approximately \( 0.025080128988 \).

PREREQUISITES
  • Understanding of inverse functions and their derivatives
  • Familiarity with calculus concepts such as differentiation
  • Knowledge of solving cubic equations
  • Proficiency in using mathematical notation and expressions
NEXT STEPS
  • Study the properties of inverse functions in calculus
  • Learn about the application of the chain rule in differentiation
  • Explore methods for solving cubic equations
  • Investigate numerical methods for approximating roots of polynomials
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus and inverse functions, as well as educators looking for examples of derivative calculations.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242.7x.01}$
$\textsf{Find the value of $df^{-1}/dx$ at $f(a)$, $x\ge4$, $a=3$}$
\begin{align*}\displaystyle
f(x)&=x^3-6x^2-3 \\
\frac{df^{-1}}{dx}\biggr\rvert_{3}
&=\frac{1}{{\frac{d}{dx}}\biggr\rvert_{3}} \\
&=\frac{1}{3x^2-12x}
=\frac{1}{3(3)^2 - 12(3)}\\
f^{-1}(3)&=\color{red}{-\frac{1}{9}}
\end{align*}
$\textit{if ok,,, comments on notation ??}$
 
Physics news on Phys.org
I would begin by writing:

$$f^{-1}\left(f(x)\right)=x$$

Differentiate w.r.t $x$:

$$[f^{-1}]'\left(f(x)\right)f'(x)=1$$

Now, we need:

$$f(x)=a\implies x=f^{-1}(a)$$

Hence:

$$[f^{-1}]'(a)=\frac{1}{f'\left(f^{-1}(a)\right)}$$

To find $f^{-1}(a)$ where $a=3$, we need to solve the following for $x$:

$$x^3-6x^2-3=3$$

$$x^3-6x^2-6=0$$

The only real root is:

$$x=2+\sqrt[3]{11-\sqrt{57}}+\sqrt[3]{11+\sqrt{57}}$$

Next, we find:

$$f'(x)=3x^2-12x$$

Hence:

$$f'\left(2+\sqrt[3]{11-\sqrt{57}}+\sqrt[3]{11+\sqrt{57}}\right)=3\left(\left(\sqrt[3]{11-\sqrt{57}}+\sqrt[3]{11+\sqrt{57}}\right)^2-4\right)$$

And so we have:

$$[f^{-1}]'(3)=\frac{1}{3\left(\left(\sqrt[3]{11-\sqrt{57}}+\sqrt[3]{11+\sqrt{57}}\right)^2-4\right)}\approx0.025080128988$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K