242.tr.05 Use the integral test to determine if a series converges.

Click For Summary
SUMMARY

The integral test confirms the convergence of the series $\sum_{n=1}^{\infty}\frac{1}{\sqrt{e^{2n}-1}}$. By evaluating the improper integral $\int_{1}^{\infty} \frac{1}{\sqrt{e^{2n}-1}}\, dn$, it is shown that $S < \int_0^{\infty}\frac{1}{\sqrt{e^{2x}-1}}\,dx$. Through a substitution of variables, the integral simplifies to $\int_0^{\frac{\pi}{2}}\,d\theta$, resulting in a convergence value of $\frac{\pi}{2}$. Therefore, the series converges definitively.

PREREQUISITES
  • Understanding of improper integrals
  • Familiarity with the integral test for convergence
  • Knowledge of substitution techniques in integration
  • Basic concepts of series and convergence
NEXT STEPS
  • Study the application of the integral test in various series
  • Learn advanced techniques for evaluating improper integrals
  • Explore convergence tests for series beyond the integral test
  • Investigate the properties of exponential functions in calculus
USEFUL FOR

Mathematics students, educators, and professionals involved in calculus, particularly those focusing on series convergence and integration techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242.tr.05}$
Use the integral test to determine
if a series converges.
$\displaystyle
\sum_{n=1}^{\infty}\frac{1}{\sqrt{e^{2n}-1}}$
so...
$\displaystyle
\int_{1}^{\infty} \frac{1}{\sqrt{e^{2n}-1}}\, dn
=\int_{1}^{\infty} (e^{2n}-1)^{1/2} \, dn $
so
$u=e^{2n}-1\therefore du=2e^{2n}$
 
Last edited:
Physics news on Phys.org
I would define:

$$S=\sum_{n=1}^{\infty}\frac{1}{\sqrt{e^{2n}-1}}$$

And so:

$$S<\int_0^{\infty}\frac{1}{\sqrt{e^{2x}-1}}\,dx$$

Let:

$$u=e^{x}\implies dx=\frac{du}{u}$$

And so:

$$S<\int_1^{\infty}\frac{1}{u\sqrt{u^2-1}}\,du$$

Let:

$$u=\sec(\theta)\implies du=\sec(\theta)\tan(\theta)\,d\theta$$

And so:

$$S<\int_0^{\frac{\pi}{2}}\,d\theta=\frac{\pi}{2}$$

Thus, the series converges.

edit: I played fast and loose with some improper integrals...:p
 
$$\int_0^\infty\frac{1}{\sqrt{e^{2x}-1}}\,dx$$

$$e^{2x}-1=z^2$$

$$2e^{2x}\,dx=2z\,dz$$

$$dx=\frac{z}{z^2+1}\,dz$$

$$\int_0^\infty\frac{1}{z^2+1}\,dz=\lim_{z\to\infty}\arctan(z)=\frac{\pi}{2}$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K