2D electric field distribution in electrolyte solution

AI Thread Summary
To determine the electric field distribution from a planar electrode, key parameters include the applied potential, ionic strength, and dielectric constant of the medium, such as a 0.5 mM NaCl solution in water. The discussion highlights the need to account for potential drops across the Stern layer and the exponential decay in the diffuse layer, with the boundary condition being that potential approaches zero as distance increases. The complexities of the system arise from the geometry, particularly the presence and placement of a counter electrode, which is crucial for accurate modeling. The electric double layer's field screening must also be considered, as it complicates the straightforward electric field distribution found in vacuum. Assumptions include treating the working electrode independently and ignoring solution resistance effects. The Poisson-Boltzmann equation is identified as a relevant mathematical framework for addressing these challenges and obtaining a clearer understanding of electric field distribution in various electrode geometries.
CheesyG
Messages
4
Reaction score
0
TL;DR Summary
How can I determine the electric field distribution in an electrolyte solution when applying a given potential to electrodes?
Hi there,

How can I determine the electric field distribution from a planar electrode? The known parameters are potential applied to the electrode, ionic strength and dielectric constant of the medium. (E.g. for the most simple case 0.5 mM NaCl in water)

I'm having difficulty finding a straightforward explanation to do this. I'd want to account for the potential drop across the Stern layer and the exponential decay of potential in the diffuse layer to get a complete picture of electric field distribution. BC is potential --> 0 as x --> infinity.

One case would be for an infinite planar electrode, another would be for a small 100nm planar electrode in a cavity.
 
Chemistry news on Phys.org
This is more of a physics problem. Sure, chemistry will add its own complications, as the medium is not homogeneous and can change in the electric field, but as the first approximation I would look for physics models for the electric field in vacuum, something around the Poisson equation if memory serves me well (I can be terribly wrong here, haven't visited this territory in ages).

I have problems understanding your setup though, you can't apply potential using a single electrode, and the presence and location of the counter electrode (geometry of the system) is probably crucial element of the system.
 
Thanks Borek!

We would apply the potential between the working and counter electrodes.

The problem also needs to account for field screening due to the presence of the electric double layer. (Electric field distribution in vacuum is much more straightforward!)

I would also make a few assumptions :

- The potential decays to 0 in the bulk solution such that we treat the working electrode independently

- we ignore iR drop, or any other effects of solution resistance

I think this should be a straightforward problem, but I’m having a hard time finding a simple expression for electric field distribution taking into account the stern and diffuse layers of the EDL (or figuring out how best to approach this). Then how to approach the problem different electrode geometries or surface areas.

Hope this makes sense,
Cheers!
 
It seems like a simple enough question: what is the solubility of epsom salt in water at 20°C? A graph or table showing how it varies with temperature would be a bonus. But upon searching the internet I have been unable to determine this with confidence. Wikipedia gives the value of 113g/100ml. But other sources disagree and I can't find a definitive source for the information. I even asked chatgpt but it couldn't be sure either. I thought, naively, that this would be easy to look up without...
I was introduced to the Octet Rule recently and make me wonder, why does 8 valence electrons or a full p orbital always make an element inert? What is so special with a full p orbital? Like take Calcium for an example, its outer orbital is filled but its only the s orbital thats filled so its still reactive not so much as the Alkaline metals but still pretty reactive. Can someone explain it to me? Thanks!!
Back
Top