2d motion range , find angle (Really simple, not sure what I'm missing)

AI Thread Summary
The discussion revolves around calculating the launch angles for a projectile fired at 40 m/s that lands 65 meters away, using the equation D = v^2/g sin(2x). The initial calculations yield one angle of approximately 11.985 degrees, but the second angle remains elusive. Participants suggest that the second angle could be derived from manipulating the sine function, but attempts to find it through various methods, including using arcsin and arccos, have not been successful. The conversation emphasizes the need for clarity on the expected format for the answer, as well as the physical reasoning behind projectile motion. Ultimately, the challenge lies in accurately determining both angles that satisfy the given conditions.
Chas3down
Messages
60
Reaction score
0

Homework Statement


Firing something at 40m/s at angle X, it lands 65meters away, give 2 angles it could be.. (Assume g=10m/s^2)(Fired at y=0)(No air resistance)

Homework Equations



D = v^2/g sin(2x)
[/B]

The Attempt at a Solution



d= v^2/g sin(2x)

65 = 40^2/10 sin(2x)

650/1600 = sin(2x)

13/32 = sin(2x)

arcsin(13/32)/2 = x
23.97/2 = x

x = 11.985
and
x = 90-11.985

But it's wrong?

Heres another form it could be in, but don't know where to go from here..
13/32 = 2sinxcosx
13/64 = sinxcosx
 
Physics news on Phys.org
Your approach looks reasonable. What is the given answer?
 
Orodruin said:
Your approach looks reasonable. What is the given answer?
There isn't one, it just says if it is correct or not (anwser must be exact)

With further research, it seems one angle is
"arcsin(13/32)/2" , which is what I had but in decimal form, however can't find the second angle.. , i tried 90 - arcsin(13/32)/2, 180 - arcsin(13/32)/2, 360 - arcsin(13/32)/2, - arcsin(13/32)/2, and arcsin(-13/32)/2, and arccos(13/32)/2

"90 - arcsin(13/32)/2" and "arccos(13/32)/2" work, but I am just not sure what form they want it in, probably a manipulation of 13/32 so the form would be arcsin(??)/2 for second angle
 
Last edited:
Chas3down said:
But it's wrong?

This question seemed to indicate that you had compared it with a solutions manual or equivalent which had stated something else.

Chas3down said:
But I can't seem to get the second angle, i tried 180 - that and 90 - that

You can argue for this either completely through mathematics - or by physical reasoning: If the angle would be 180 - 12 degrees, would the projectile land in front of the firing point?

The mathematical approach is to note that sin(2x) = a implies that 2x = asin(a) or 2x = 180o - asin(a).
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top