MHB 311.1.7.9 For what values of h is v_3 in Span {v_1,v_2,v_3}

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Span
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{311.1.7.9}$
For what values of $h$ is $v_3$ in Span $\{v_1,v_2,v_3\}$ linearly \textit{dependent}. Justify
$v_1=\left[\begin{array}{rrrrrr}1\\-3\\2\end{array}\right],
v_2=\left[\begin{array}{rrrrrr}-3\\9\\-6\end{array}\right],
v_3=\left[\begin{array}{rrrrrr}5\\-7\\h\end{array}\right]$

$v_3$ is in Span{v1, v2} means there exists a constant such that

$c_1v_1 + c_2v_2 = v_3$

So if, but this is an augmented matrix

$\left[\begin{array}{rr|r}1 &−3& 2 \\ −3 &9 &−7 \\5 &−7& h \end{array}\right]$
RREF
$\left[ \begin{array}{ccc} 1 & -3 & 2 \\0 & 0 & -1 \\0 & 8 & h - 10 \end{array} \right]$
anyway, so far:unsure:$
 
Last edited:
Physics news on Phys.org
Your wording is a little off- it is not a vector in the span that is independent, it is the set of vectors themselves. And to do this problem you need to think about the DEFNITION of "independent vectors": these vectors are independent if and only there do NOT exist numbers, a, b, and c, not all 0, such that [math]a\begin{bmatrix}1 \\ -2 \\ 3\end{bmatrix}+ b\begin{bmatrix}-3 \\ 9 \\ -6 \end{bmatrix}+ c \begin{bmatrix}5 \\ -7 \\ h \end{bmatrix}= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}[/math]

That is the same as saying
a- 3b+ 5c= 0
-2a+ 9b- 7c= 0
3a- 6b+ hc= 0

Try to solve those. h will make those vectors independent if the only solution is a= b= c= 0,

That can be done using an augmented matrix similar to your matrix- but your matrix is not "augmented". You need\begin{bmatrix}1 & -3 & 5 & 0 \\ -2 & 9 & -7 & 0 \\ 3 & -6 & h & 0 \end{bmatrix}.
 
ok here is the theorm I think we need r3 is a pivit row

Screenshot 2020-12-31 at 4.30.35 PM.png
 
Last edited:
Starting from $\begin{bmatrix}1 & -3 & 5 & 0 \\ -2 & 9 & -7 & 0 \\ 3 & -6 & h & 0 \end{bmatrix}$ add twice the first row to the second row and subtract three times the first row from the third row to get $\begin{bmatrix}1 & -3 & 5 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 3 & h-15 & 0 \end{bmatrix}$.

Now subtract the new second row from the third row to get $\begin{bmatrix}1 & -3 & 5 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & h-18 & 0 \end{bmatrix}$.

That matrix is equivalent to the equations a- 3b+ 5c= 0, 3b+ 3c= 0, and (h- 18)c= 0. If h is not 18, we can divide both side of the last equation by h- 18 to get c= 0. Then the second equation becomes 3b= 0 so b= 0 and the first equation becomes a= 0. That is, if h is anything other than 18, the vectors are independent. If h= 18, however, (h- 18)c= 0 becomes 0= 0 which is true for any c, 3b+ 3c= 0 gives b= -c and a- 3b+ 5c= a+ 8c= 0 so a= -8c. There exist infinitely many a, b, c that make the equations true so the vectors are dependent.

I don't know why you are giving the definition of a system of equations being "consistent". The exercise in your first post says nothing about a system of equation nor "consistency".
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K