Graduate A Calculation of a Form Factor at large ##q^2##

  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
  • Tags Tags
    Calculation Form
Click For Summary
The discussion focuses on calculating the form factor for heavy hadrons at large momentum transfer, specifically ##q^2##. The form factor is normalized to ensure the Coulomb contribution matches the total hadronic charge at ##q^2=0## and aligns with non-relativistic calculations at small momentum transfer. The provided formula for the form factor incorporates parameters like the meson decay constant, ##f_M##, and the Lorentz factor, ##\gamma##. A user seeks assistance in deriving the form factor ##F^M_{(0,0)}## from the expression for large ##q^2##, noting difficulties with Mathematica's series expansion. The thread concludes with a lack of responses to the user's query.
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
TL;DR
A question on a calculation in the book of Mueller, Perturbative QCD, from page 180.
On page 180 they write the following passage:
The form factors for the heavy hadrons are normalized by the constraint that the Coulomb contribution to the form factor equals the total hadronic charge at ##q^2=0##. Further, by the correspondence principle, the form factor should agree with the standard non-relativistic calculation at small momentum transfer. All of these constraints are satisfied by the form:
F^M_{(0,0)}(q^2)=e_1\frac{16\gamma^4}{(q^2+\gamma^2)^2}(\frac{M_H^2}{m_2^2})^2 \bigg( 1-\frac{q^2}{4M_H^2}\frac{2m_2}{m_1}\bigg)+1\leftrightarrow 2 .
At large ##q^2## the form factor can also be written as:
F^M_{(0,0)}=e_1 \frac{16\pi\alpha_s f_M^2}{9q^2}(\frac{M_H^2}{m_2^2})+(1\leftrightarrow 2), f_M/(2\sqrt{3})=\int_0^1dx \phi(x,Q)
where ##f_M=(6\gamma^3/\pi M_H)^{1/2}## is the meson decay constant.

My question is how do I get ##F^M_{(0,0)}## from ##F^M_{(0,0)}(q^2)## for large ##q^2##.
I tried using Mathematica's free input to get the series ##1/(1+x^2)^2=1-2x^2+3x^4+O(x^6)##, in our case ##x=\gamma/q##.
But it doesn't seem to fit the result from the book, perhaps there's something I am missing, any help?
A remark, ##\gamma## is Lorentz factor.

Thanks!
 
Last edited:
Physics news on Phys.org
Hi everyone, I am doing a final project on the title " fundamentals of neutrino physics". I wanted to raise some issues with neutrino which makes it the possible way to the physics beyond standard model. I am myself doing some research on these topics but at some points the math bugs me out. Anyway, i have some questions which answers themselves confounded me due to the complicated math. Some pf them are: 1. Why wouldn't there be a mirror image of a neutrino? Is it because they are...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
2K
  • · Replies 3 ·
Replies
3
Views
369