MHB A derivation of the duplication formula for the Barnes-G function

polygamma
Messages
227
Reaction score
0
In a commentary thread DreamWeaver asked if anyone knew of a derivation of the multiplication formula for the Barnes-G function other than the almost impossible to follow derivation in Barnes' original paper.

I suggested using the multiplication formula for the Hurwitz zeta function.

In this thread I'm going to derive the duplication formula.

But the approach could be generalized.
The Hurwitz zeta function satisfies the following multiplication formula:

$$ \displaystyle \zeta(s,nz) = n^{-s} \sum_{k=0}^{n-1} \zeta \Big(s,z+\frac{k}{n} \Big)$$

So for $n=2$,

$$ 2^{s} \zeta(s,2z) = \zeta(s,z) + \zeta \Big(s+ \frac{1}{2} \Big)$$

Differentiate both sides of the above equation with respect to $s$ and then let $s=-1$.

$$\frac{\ln 2}{2} \zeta(-1,2z) + \frac{\zeta'(s,2z)}{2} = \zeta(-1,z) + \zeta \Big(-1,z+ \frac{1}{2} \Big) \ \ \ \ \ (1)$$For a positive integer $n$,

$$ \zeta(-n,z) = \frac{B_{n+1}(z)}{n+1} $$

where $B_{n+1}$ is the Bernoulli polynomial of order $n+1$.

The identity can be derived from the contour integral representation of the Hurwitz zeta function.

So

$$ \zeta(-1,2z) = - \frac{B_{2}(2z)}{2} = - \frac{1}{2} \Big(4z^{2}-2z+\frac{1}{6} \Big) = - 2z^{2} + z -\frac{1}{2} \ \ \ \ \ (2)$$And for $\text{Re}(z) >0 $, the Barnes G function has the following closed form expression:

$$\log G(z+1) = z \log \Gamma(z) + \zeta'(-1) + \zeta'(-1,z)$$

$$ \implies \zeta'(-1,z) = (z-1) \log \Gamma(z) + \zeta'(-1) - \log G(z) \ \ \ \ \ (3)$$Combining (1), (2), and (3) we have

$$\frac{\ln 2}{2} \Big( -2z^{2} +z - \frac{1}{12} \Big) + \frac{1}{2} (2z-1) \log \Gamma(2z) + \zeta'(-1) - \log G(2z) \Big) $$

$$ = (z-1) \log \Gamma(z) + \zeta'(-1) - \log G(z) + \Big(z- \frac{1}{2} \Big) \log \Gamma \Big( z + \frac{1}{2} \Big) + \zeta'(-1) - \log G \Big(z - \frac{1}{2} \Big)$$$$ \implies \log G(2z) = -3 \zeta'(-1) + \Big(-2z^{2} +z - \frac{1}{12} \Big) \log 2 +(2z-1) \log \Gamma (2z) - +2 (1-z) \log \Gamma(z) $$

$$+2 \log G(z) +(1-2z) \log \Gamma \Big(z + \frac{1}{2} \Big) + 2 \log G \left(z + \frac{1}{2} \right)$$Then using the duplication formula for the gamma function,

$$ \log G(2z) = -3 \zeta'(-1) + \Big(-2z^{2} +z - \frac{1}{12} \Big) \log 2 +(2z-1) \Big[ \log \Gamma (z) + \log \Gamma \Big(z + \frac{1}{2} \Big) + (2z-1) \log 2 $$

$$- \frac{\log \pi}{2} \Big] +2 (1-z) \log \Gamma(z) +2 \log G(z) +(1-2z) \log \Gamma \Big(z + \frac{1}{2} \Big) + 2 \log G \left(z + \frac{1}{2} \right)$$

$$ = -3 \zeta'(1) + \Big( 2z^{2} -3z + \frac{11}{12} \Big) \log 2 +(1-2z) \frac{\log \pi}{2} + \log \Gamma(z) + 2 \log G(z) + 2 \log \Big(z + \frac{1}{2} \Big) $$

$$ = -3 \zeta'(-1) + \Big( 2z^{2} -2z + \frac{5}{12} \Big) \log 2 + \frac{1-2z}{2} \log 2 \pi + \log \Gamma(z) + 2 \log G(z) + 2 \log G \left(z + \frac{1}{2} \right)$$$$ \implies G(2z) = e^{-3 \zeta'(-1)} \ 2^{2z^{2}-2z +5/12} \ (2 \pi)^{1/2(1-2z)} \ \Gamma(z) \ G^{2}(z) \ G^{2} \left(z + \frac{1}{2} \right) $$

$$ = A^{3} \ e^{-1/4} \ 2^{2z^{2}-2z +5/12} \ (2 \pi)^{1/2(1-2z)} \ G(z) \ G^{2} \left(z + \frac{1}{2} \right) \ G(z+1)$$

where $A$ is the Glashier-Kinkelin constant
 
Physics news on Phys.org
Simply breath-taking...Sincere thanks for sharing, RV... (Hug)
 
Thanks.

I can't quite figure out how to generalize other than to repeat the approach for other values of $n$ and try to notice a pattern.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K