A derivation of the duplication formula for the Barnes-G function

Click For Summary
SUMMARY

The forum discussion focuses on deriving the duplication formula for the Barnes-G function using the multiplication formula for the Hurwitz zeta function. The key equations presented include the differentiation of the Hurwitz zeta function and its relationship with Bernoulli polynomials. The final result shows that the Barnes-G function can be expressed in terms of the gamma function and the Glashier-Kinkelin constant, providing a clear pathway for further exploration of this mathematical concept.

PREREQUISITES
  • Understanding of the Hurwitz zeta function and its multiplication formula.
  • Familiarity with Bernoulli polynomials and their properties.
  • Knowledge of the gamma function and its duplication formula.
  • Basic calculus, particularly differentiation techniques.
NEXT STEPS
  • Research the properties and applications of the Hurwitz zeta function.
  • Study Bernoulli polynomials and their role in number theory.
  • Explore the gamma function and its duplication formula in depth.
  • Investigate generalizations of the duplication formula for various values of n.
USEFUL FOR

Mathematicians, researchers in number theory, and anyone interested in advanced mathematical functions and their applications will benefit from this discussion.

polygamma
Messages
227
Reaction score
0
In a commentary thread DreamWeaver asked if anyone knew of a derivation of the multiplication formula for the Barnes-G function other than the almost impossible to follow derivation in Barnes' original paper.

I suggested using the multiplication formula for the Hurwitz zeta function.

In this thread I'm going to derive the duplication formula.

But the approach could be generalized.
The Hurwitz zeta function satisfies the following multiplication formula:

$$ \displaystyle \zeta(s,nz) = n^{-s} \sum_{k=0}^{n-1} \zeta \Big(s,z+\frac{k}{n} \Big)$$

So for $n=2$,

$$ 2^{s} \zeta(s,2z) = \zeta(s,z) + \zeta \Big(s+ \frac{1}{2} \Big)$$

Differentiate both sides of the above equation with respect to $s$ and then let $s=-1$.

$$\frac{\ln 2}{2} \zeta(-1,2z) + \frac{\zeta'(s,2z)}{2} = \zeta(-1,z) + \zeta \Big(-1,z+ \frac{1}{2} \Big) \ \ \ \ \ (1)$$For a positive integer $n$,

$$ \zeta(-n,z) = \frac{B_{n+1}(z)}{n+1} $$

where $B_{n+1}$ is the Bernoulli polynomial of order $n+1$.

The identity can be derived from the contour integral representation of the Hurwitz zeta function.

So

$$ \zeta(-1,2z) = - \frac{B_{2}(2z)}{2} = - \frac{1}{2} \Big(4z^{2}-2z+\frac{1}{6} \Big) = - 2z^{2} + z -\frac{1}{2} \ \ \ \ \ (2)$$And for $\text{Re}(z) >0 $, the Barnes G function has the following closed form expression:

$$\log G(z+1) = z \log \Gamma(z) + \zeta'(-1) + \zeta'(-1,z)$$

$$ \implies \zeta'(-1,z) = (z-1) \log \Gamma(z) + \zeta'(-1) - \log G(z) \ \ \ \ \ (3)$$Combining (1), (2), and (3) we have

$$\frac{\ln 2}{2} \Big( -2z^{2} +z - \frac{1}{12} \Big) + \frac{1}{2} (2z-1) \log \Gamma(2z) + \zeta'(-1) - \log G(2z) \Big) $$

$$ = (z-1) \log \Gamma(z) + \zeta'(-1) - \log G(z) + \Big(z- \frac{1}{2} \Big) \log \Gamma \Big( z + \frac{1}{2} \Big) + \zeta'(-1) - \log G \Big(z - \frac{1}{2} \Big)$$$$ \implies \log G(2z) = -3 \zeta'(-1) + \Big(-2z^{2} +z - \frac{1}{12} \Big) \log 2 +(2z-1) \log \Gamma (2z) - +2 (1-z) \log \Gamma(z) $$

$$+2 \log G(z) +(1-2z) \log \Gamma \Big(z + \frac{1}{2} \Big) + 2 \log G \left(z + \frac{1}{2} \right)$$Then using the duplication formula for the gamma function,

$$ \log G(2z) = -3 \zeta'(-1) + \Big(-2z^{2} +z - \frac{1}{12} \Big) \log 2 +(2z-1) \Big[ \log \Gamma (z) + \log \Gamma \Big(z + \frac{1}{2} \Big) + (2z-1) \log 2 $$

$$- \frac{\log \pi}{2} \Big] +2 (1-z) \log \Gamma(z) +2 \log G(z) +(1-2z) \log \Gamma \Big(z + \frac{1}{2} \Big) + 2 \log G \left(z + \frac{1}{2} \right)$$

$$ = -3 \zeta'(1) + \Big( 2z^{2} -3z + \frac{11}{12} \Big) \log 2 +(1-2z) \frac{\log \pi}{2} + \log \Gamma(z) + 2 \log G(z) + 2 \log \Big(z + \frac{1}{2} \Big) $$

$$ = -3 \zeta'(-1) + \Big( 2z^{2} -2z + \frac{5}{12} \Big) \log 2 + \frac{1-2z}{2} \log 2 \pi + \log \Gamma(z) + 2 \log G(z) + 2 \log G \left(z + \frac{1}{2} \right)$$$$ \implies G(2z) = e^{-3 \zeta'(-1)} \ 2^{2z^{2}-2z +5/12} \ (2 \pi)^{1/2(1-2z)} \ \Gamma(z) \ G^{2}(z) \ G^{2} \left(z + \frac{1}{2} \right) $$

$$ = A^{3} \ e^{-1/4} \ 2^{2z^{2}-2z +5/12} \ (2 \pi)^{1/2(1-2z)} \ G(z) \ G^{2} \left(z + \frac{1}{2} \right) \ G(z+1)$$

where $A$ is the Glashier-Kinkelin constant
 
Physics news on Phys.org
Simply breath-taking...Sincere thanks for sharing, RV... (Hug)
 
Thanks.

I can't quite figure out how to generalize other than to repeat the approach for other values of $n$ and try to notice a pattern.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
9
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K