DreamWeaver
- 297
- 0
Here are a few Vardi-type integrals I recently posted on another forum (some of you might have seen them)...Assuming the following classic result - due to Vardi - holds...\int_{\pi/4}^{\pi/2}\log\log(\tan x)\,dx=\frac{\pi}{2}\log\left[\sqrt{2\pi}\frac{\Gamma(3/4)}{\Gamma(1/4)}\right]Prove that:
\int_{\pi/4}^{\pi/2}\log^2[\log(\tan x)]\,dx=
\beta''(1)+\frac{\pi^3}{24}-\frac{\pi\gamma^2}{4}-\pi\gamma\log\left[\sqrt{2\pi}\frac{\Gamma(3/4)}{\Gamma(1/4)}\right]and...\int_{\pi/4}^{\pi/2}\log^3[\log(\tan x)]\,dx=
\beta'''(1)-3\gamma\,\beta''(1)+\frac{\pi\gamma^3}{2}-\frac{\pi}{2}\zeta(3) + \left(\frac{\pi^3}{4}+\frac{3\pi\gamma^2}{2}\right)\log\left[\sqrt{2\pi}\frac{\Gamma(3/4)}{\Gamma(1/4)}\right]
Where $$\beta(x)\,$$ is the Dirichlet Beta function, defined by:$$\beta(x)=\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^x}$$
\int_{\pi/4}^{\pi/2}\log^2[\log(\tan x)]\,dx=
\beta''(1)+\frac{\pi^3}{24}-\frac{\pi\gamma^2}{4}-\pi\gamma\log\left[\sqrt{2\pi}\frac{\Gamma(3/4)}{\Gamma(1/4)}\right]and...\int_{\pi/4}^{\pi/2}\log^3[\log(\tan x)]\,dx=
\beta'''(1)-3\gamma\,\beta''(1)+\frac{\pi\gamma^3}{2}-\frac{\pi}{2}\zeta(3) + \left(\frac{\pi^3}{4}+\frac{3\pi\gamma^2}{2}\right)\log\left[\sqrt{2\pi}\frac{\Gamma(3/4)}{\Gamma(1/4)}\right]
Where $$\beta(x)\,$$ is the Dirichlet Beta function, defined by:$$\beta(x)=\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^x}$$