MHB A few tricky integrals.... Or are they?

  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Integrals
AI Thread Summary
The discussion centers on evaluating specific integrals related to Vardi's results, particularly focusing on the integral of log functions involving the tangent function. The integrals in question include expressions for log squared and log cubed of log(tan x), which are connected to the Dirichlet Beta function and involve complex analysis techniques. A method is outlined for evaluating these integrals by differentiating under the integral sign and employing contour integration. The final results link back to classical constants and gamma functions, demonstrating a deep connection between these integrals and special functions. The conversation highlights advanced techniques in integral calculus and their applications in mathematical analysis.
DreamWeaver
Messages
297
Reaction score
0
Here are a few Vardi-type integrals I recently posted on another forum (some of you might have seen them)...Assuming the following classic result - due to Vardi - holds...\int_{\pi/4}^{\pi/2}\log\log(\tan x)\,dx=\frac{\pi}{2}\log\left[\sqrt{2\pi}\frac{\Gamma(3/4)}{\Gamma(1/4)}\right]Prove that:
\int_{\pi/4}^{\pi/2}\log^2[\log(\tan x)]\,dx=

\beta''(1)+\frac{\pi^3}{24}-\frac{\pi\gamma^2}{4}-\pi\gamma\log\left[\sqrt{2\pi}\frac{\Gamma(3/4)}{\Gamma(1/4)}\right]and...\int_{\pi/4}^{\pi/2}\log^3[\log(\tan x)]\,dx=

\beta'''(1)-3\gamma\,\beta''(1)+\frac{\pi\gamma^3}{2}-\frac{\pi}{2}\zeta(3) + \left(\frac{\pi^3}{4}+\frac{3\pi\gamma^2}{2}\right)\log\left[\sqrt{2\pi}\frac{\Gamma(3/4)}{\Gamma(1/4)}\right]
Where $$\beta(x)\,$$ is the Dirichlet Beta function, defined by:$$\beta(x)=\sum_{k=0}^{\infty}\frac{(-1)^k}{(2k+1)^x}$$
 
Mathematics news on Phys.org
I saw your other post, so I'm not going to say much.

But here's a brief outline of a way to evaluate Vardi's integral.Let $ \displaystyle I(a) = \int_{0}^{\infty}\frac{\ln(a^{2}+x^{2})}{\cosh x} \ dx $ and differentiate inside of the integral to get $ \displaystyle I'(a) = \int_{0}^{\infty} \frac{2a}{(a^{2}+x^{2}) \cosh x} \ dx $.

$I'(a)$ can be evaluated be letting $ \displaystyle f(z) = \frac{2a}{(a^{2}+z^{2}) \cosh z}$ and integrating around a rectangle or circle in the upper-half complex plane.

After somewhat tedious calculations, you''ll find that $ \displaystyle I'(a) = \Big[ \psi \Big(\frac{3}{4} + \frac{a}{2 \pi} \Big) - \psi \Big(\frac{1}{4} + \frac{a}{2 \pi} \Big) \Big]$

Then integrate back with respect to $a$.

Finding the constant of integration is tricky. It involves rewriting the integral and letting $a$ go to $\infty$.

But it will turn out that $ \displaystyle I(a) = 2 \pi \ln \Bigg[ \sqrt{2 \pi} \frac{\Gamma(\frac{3}{4} + \frac{a}{2 \pi})}{\Gamma(\frac{1}{4} + \frac{a}{2 \pi})} \Bigg] $

Then $ \displaystyle \lim_{a \to 0^{+}} I(a) = 2 \int_{0}^{\infty} \frac{\ln x}{\cosh x} \ dx = 2 \pi \ln \Bigg[ \sqrt{2 \pi} \frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})} \Bigg] $

Finally make the change of variables $x = \ln (\tan u) $.
 
Last edited:
Very nice, RV! (Rock)
 
No worries if not, but just in case anyone's interested, here's a little hint to get you started in the right direction...

(Bandit)
Consider the integral:$$\int_0^{\infty}\frac{x^{q-1}}{\cosh x}\,dx$$for the real parameter $$q\in\mathbb{R}^+$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top