A A good quantum number for Cnv symmetry?

Amentia
Messages
108
Reaction score
5
Hello,

I was wondering if it was possible to define good quantum numbers in solid state physics or chemistry when systems posses a discrete cylindrical symmetry Cnv. I know that in terms of angular momentum, L and L_z will be good quantum numbers for spherical symmetry, then only L_z is a good quantum number for cylindrical symmetry.

What about C2v, C3v, etc.? Is it possible to define an operator which commutes with the Hamiltonian and provide a quantum number similar to L_z?

I am sorry if this is common knowledge but I have not found the answer on the internet nor in the textbooks I know of.

Thanks for your help!
 
Physics news on Phys.org
Amentia said:
What about C2v, C3v, etc.? Is it possible to define an operator which commutes with the Hamiltonian and provide a quantum number similar to L_z?
Of course. A ##C_{2v}## molecule is symmetric under a ##180^{\circ}## rotation about the symmetry axis, so the Hamiltonian commutes with the ##180^{\circ}## rotation operator. Tinkham’s book on group theory in quantum mechanics is a good resource.
 
TeethWhitener said:
Of course. A ##C_{2v}## molecule is symmetric under a ##180^{\circ}## rotation about the symmetry axis, so the Hamiltonian commutes with the ##180^{\circ}## rotation operator. Tinkham’s book on group theory in quantum mechanics is a good resource.

Thank you for your answer. When you use group theory and couple this discrete angular momentum with the spin projection, ##L_{z}(180^{\circ})+S_{z}##, is there a way to define the eigenstates of the Hamiltonian? I am used to couple L+S for L=1 and S=1/2 in semiconductor physics to obtain J=3/2 and J=1/2 states that define heavy-hole, light-hole and split-off. In some textbooks, they take only J_z as a good quantum number to define some new set of states.

I have Tinkham's book but I don't remember seeing a derivation of this procedure. Are you recommending the book in general or thinking to a specific chapter?
 
I guess I’m confused about what you’re asking. Are you thinking about spin-orbit coupling in molecules vs solids? Or maybe spin-rotation coupling like we see with spin isomers of hydrogen?
 
Sorry I tried to stay general as I was thinking it would be easier for people to answer but I guess it makes everything confusing.

I am thinking about nanostructures where you have a part of the wave function which is a Bloch state (like in regular solid state physics) and a second part which is an envelope function. So the Bloch state basis is already ##J=L+S## and then the envelope has also some angular momentum ##L_{env}##.

In the book The k.p Method by Lok Lew Yan Voon and Morten Willatzen, they first assume a spherical symmetry and say they can now couple ##J## to ##L_{env}## and generate a new good quantum number ##F## by the usual composition of angular momentum rules with Clebsch-Gordan coefficients.

Then, they consider systems with cylindrical symmetry and say ##F## is not a good quantum number anymore but we can keep its projection ##F_{z}##. Then they find that for a quantum wire for example you can write the wave function as ##|\psi_{F_{z}}\rangle = \sum_{J_{z}}C_{J_{z},F_{z}}|\frac{3}{2},J_{z}\rangle\otimes|F_{z}-J_{z}\rangle##.

Actual nanostructures can have "discrete" cylindrical symmetry like ##C_{2v}## and I was wondering if their approach could be extended to find a good quantum number, basis states... If I write the rotation operator for ##C_{2}## in the cylindrical case, I would use ##exp(i\pi F_{z}/\hbar)## but ##F_{z}## is not supposed to be a good quantum number anymore.

I hope what I am trying to understand is better explained. I am sure it must be taught in group theory books somewhere as you hinted if it has been done before in other cases. But my first question is really: is it possible?
 
Ah ok, yes it's much clearer what you're after now. Unfortunately, I don't have anything really insightful to say about it. I imagine it will be analogous to the symmetry breaking seen with an atom in a crystal field. ##F_z## definitely won't be a good quantum number, though. I'll think more about it if I get a moment.
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top