A good quantum number for Cnv symmetry?

Click For Summary
SUMMARY

This discussion centers on the definition of good quantum numbers in systems exhibiting discrete cylindrical symmetry, specifically Cnv symmetries. It establishes that while L and L_z serve as good quantum numbers for spherical symmetry, only L_z remains valid for cylindrical symmetry. The conversation references Tinkham’s book on group theory in quantum mechanics as a valuable resource for understanding the commutation of operators with the Hamiltonian. Additionally, it explores the implications of coupling angular momentum with spin in nanostructures, particularly in the context of Bloch states and envelope functions.

PREREQUISITES
  • Understanding of quantum mechanics and angular momentum
  • Familiarity with group theory in quantum mechanics
  • Knowledge of Bloch states and envelope functions in solid-state physics
  • Experience with the k.p method for semiconductor physics
NEXT STEPS
  • Study Tinkham’s book on group theory in quantum mechanics for insights on operator commutation
  • Research the k.p method by Lok Lew Yan Voon and Morten Willatzen for applications in nanostructures
  • Explore the implications of spin-orbit coupling in solid-state systems
  • Investigate symmetry breaking in crystal fields and its effects on quantum numbers
USEFUL FOR

Physicists, particularly those specializing in solid-state physics, quantum mechanics, and nanostructure research, will benefit from this discussion. It is also relevant for students and researchers interested in the application of group theory to quantum systems.

Amentia
Messages
108
Reaction score
5
Hello,

I was wondering if it was possible to define good quantum numbers in solid state physics or chemistry when systems posses a discrete cylindrical symmetry Cnv. I know that in terms of angular momentum, L and L_z will be good quantum numbers for spherical symmetry, then only L_z is a good quantum number for cylindrical symmetry.

What about C2v, C3v, etc.? Is it possible to define an operator which commutes with the Hamiltonian and provide a quantum number similar to L_z?

I am sorry if this is common knowledge but I have not found the answer on the internet nor in the textbooks I know of.

Thanks for your help!
 
Physics news on Phys.org
Amentia said:
What about C2v, C3v, etc.? Is it possible to define an operator which commutes with the Hamiltonian and provide a quantum number similar to L_z?
Of course. A ##C_{2v}## molecule is symmetric under a ##180^{\circ}## rotation about the symmetry axis, so the Hamiltonian commutes with the ##180^{\circ}## rotation operator. Tinkham’s book on group theory in quantum mechanics is a good resource.
 
TeethWhitener said:
Of course. A ##C_{2v}## molecule is symmetric under a ##180^{\circ}## rotation about the symmetry axis, so the Hamiltonian commutes with the ##180^{\circ}## rotation operator. Tinkham’s book on group theory in quantum mechanics is a good resource.

Thank you for your answer. When you use group theory and couple this discrete angular momentum with the spin projection, ##L_{z}(180^{\circ})+S_{z}##, is there a way to define the eigenstates of the Hamiltonian? I am used to couple L+S for L=1 and S=1/2 in semiconductor physics to obtain J=3/2 and J=1/2 states that define heavy-hole, light-hole and split-off. In some textbooks, they take only J_z as a good quantum number to define some new set of states.

I have Tinkham's book but I don't remember seeing a derivation of this procedure. Are you recommending the book in general or thinking to a specific chapter?
 
I guess I’m confused about what you’re asking. Are you thinking about spin-orbit coupling in molecules vs solids? Or maybe spin-rotation coupling like we see with spin isomers of hydrogen?
 
Sorry I tried to stay general as I was thinking it would be easier for people to answer but I guess it makes everything confusing.

I am thinking about nanostructures where you have a part of the wave function which is a Bloch state (like in regular solid state physics) and a second part which is an envelope function. So the Bloch state basis is already ##J=L+S## and then the envelope has also some angular momentum ##L_{env}##.

In the book The k.p Method by Lok Lew Yan Voon and Morten Willatzen, they first assume a spherical symmetry and say they can now couple ##J## to ##L_{env}## and generate a new good quantum number ##F## by the usual composition of angular momentum rules with Clebsch-Gordan coefficients.

Then, they consider systems with cylindrical symmetry and say ##F## is not a good quantum number anymore but we can keep its projection ##F_{z}##. Then they find that for a quantum wire for example you can write the wave function as ##|\psi_{F_{z}}\rangle = \sum_{J_{z}}C_{J_{z},F_{z}}|\frac{3}{2},J_{z}\rangle\otimes|F_{z}-J_{z}\rangle##.

Actual nanostructures can have "discrete" cylindrical symmetry like ##C_{2v}## and I was wondering if their approach could be extended to find a good quantum number, basis states... If I write the rotation operator for ##C_{2}## in the cylindrical case, I would use ##exp(i\pi F_{z}/\hbar)## but ##F_{z}## is not supposed to be a good quantum number anymore.

I hope what I am trying to understand is better explained. I am sure it must be taught in group theory books somewhere as you hinted if it has been done before in other cases. But my first question is really: is it possible?
 
Ah ok, yes it's much clearer what you're after now. Unfortunately, I don't have anything really insightful to say about it. I imagine it will be analogous to the symmetry breaking seen with an atom in a crystal field. ##F_z## definitely won't be a good quantum number, though. I'll think more about it if I get a moment.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
3K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 26 ·
Replies
26
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
5K