A hard integral gives a simple closed form, π/(4a)^3

Click For Summary
SUMMARY

The integral $$\int_{0}^{\infty}\mathrm dx{\sin^2\left({a\over x}\right)\over (4a^2+x^2)^2}={\pi\over (4a)^3}$$ has been proposed for proof. The discussion centers around methods to establish this equality, with emphasis on techniques from advanced calculus and integral transforms. Participants suggest utilizing residue theorem and contour integration as effective strategies for proving the integral's closed form.

PREREQUISITES
  • Understanding of advanced calculus concepts, particularly integral calculus.
  • Familiarity with the residue theorem in complex analysis.
  • Knowledge of contour integration techniques.
  • Experience with trigonometric integrals and their properties.
NEXT STEPS
  • Study the residue theorem in complex analysis for evaluating integrals.
  • Research contour integration methods and their applications in solving integrals.
  • Explore trigonometric integral identities and their derivations.
  • Practice solving similar integrals to reinforce understanding of advanced calculus techniques.
USEFUL FOR

Mathematicians, physics students, and anyone interested in advanced calculus and integral evaluation techniques will benefit from this discussion.

Tony1
Messages
9
Reaction score
0
Proposed:

How can we prove $(1)?$

$$\int_{0}^{\infty}\mathrm dx{\sin^2\left({a\over x}\right)\over (4a^2+x^2)^2}={\pi\over (4a)^3}\tag1$$

We can start to decompose $(1)$ to...

$$\int_{0}^{\infty}\mathrm dx{1\over (4a^2+x^2)^2}-\int_{0}^{\infty}\mathrm dx{\cos^2\left({a\over x}\right)\over (4a^2+x^2)^2}\tag2$$

$$\int_{0}^{\infty}\mathrm dx{1\over (4a^2+x^2)^2}-{1\over 2}\int_{0}^{\infty}\mathrm dx{1\over (4a^2+x^2)^2}-{1\over 2}\int_{0}^{\infty}\mathrm dx{\cos\left({2a\over x}\right)\over (4a^2+x^2)^2}\tag3$$

$${1\over 2}\int_{0}^{\infty}\mathrm dx{1\over (4a^2+x^2)^2}-{1\over 2}\int_{0}^{\infty}\mathrm dx{\cos\left({2a\over x}\right)\over (4a^2+x^2)^2}\tag4$$

So far...
 
Physics news on Phys.org
Hi, Tony.

Your work looks good so far. Next, you can use a $u$-substitution to show that
$$\int_{0}^{\infty}\frac{\cos\left(\frac{2a}{x}\right)}{(4a^{2}+x^{2})^{2}}dx=\frac{1}{(2a)^{3}}\int_{0}^{\infty}\frac{x^{2}\cos (x)}{(x^{2}+1)^{2}}dx.$$
The idea is to now notice that the two integrals in (4) --i.e.,
$$\int_{0}^{\infty}\frac{1}{(4a^{2}+x^{2})^{2}}dx\qquad\text{and}\qquad\int_{0}^{\infty}\frac{x^{2}\cos (x)}{(x^{2}+1)^{2}}dx$$
-- are even functions of $x$, so can be expressed as
$$\frac{1}{2}\int_{-\infty}^{\infty}\frac{1}{(4a^{2}+x^{2})^{2}}dx\qquad\text{and}\qquad\frac{1}{2}\int_{-\infty}^{\infty}\frac{x^{2}\cos (x)}{(x^{2}+1)^{2}}dx.$$
Now use the method of contour integration on these integrals to obtain the desired result.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K