MHB A hard integral gives a simple closed form, π/(4a)^3

Tony1
Messages
9
Reaction score
0
Proposed:

How can we prove $(1)?$

$$\int_{0}^{\infty}\mathrm dx{\sin^2\left({a\over x}\right)\over (4a^2+x^2)^2}={\pi\over (4a)^3}\tag1$$

We can start to decompose $(1)$ to...

$$\int_{0}^{\infty}\mathrm dx{1\over (4a^2+x^2)^2}-\int_{0}^{\infty}\mathrm dx{\cos^2\left({a\over x}\right)\over (4a^2+x^2)^2}\tag2$$

$$\int_{0}^{\infty}\mathrm dx{1\over (4a^2+x^2)^2}-{1\over 2}\int_{0}^{\infty}\mathrm dx{1\over (4a^2+x^2)^2}-{1\over 2}\int_{0}^{\infty}\mathrm dx{\cos\left({2a\over x}\right)\over (4a^2+x^2)^2}\tag3$$

$${1\over 2}\int_{0}^{\infty}\mathrm dx{1\over (4a^2+x^2)^2}-{1\over 2}\int_{0}^{\infty}\mathrm dx{\cos\left({2a\over x}\right)\over (4a^2+x^2)^2}\tag4$$

So far...
 
Mathematics news on Phys.org
Hi, Tony.

Your work looks good so far. Next, you can use a $u$-substitution to show that
$$\int_{0}^{\infty}\frac{\cos\left(\frac{2a}{x}\right)}{(4a^{2}+x^{2})^{2}}dx=\frac{1}{(2a)^{3}}\int_{0}^{\infty}\frac{x^{2}\cos (x)}{(x^{2}+1)^{2}}dx.$$
The idea is to now notice that the two integrals in (4) --i.e.,
$$\int_{0}^{\infty}\frac{1}{(4a^{2}+x^{2})^{2}}dx\qquad\text{and}\qquad\int_{0}^{\infty}\frac{x^{2}\cos (x)}{(x^{2}+1)^{2}}dx$$
-- are even functions of $x$, so can be expressed as
$$\frac{1}{2}\int_{-\infty}^{\infty}\frac{1}{(4a^{2}+x^{2})^{2}}dx\qquad\text{and}\qquad\frac{1}{2}\int_{-\infty}^{\infty}\frac{x^{2}\cos (x)}{(x^{2}+1)^{2}}dx.$$
Now use the method of contour integration on these integrals to obtain the desired result.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top