MHB A hard integral gives a simple closed form, π/(4a)^3

Tony1
Messages
9
Reaction score
0
Proposed:

How can we prove $(1)?$

$$\int_{0}^{\infty}\mathrm dx{\sin^2\left({a\over x}\right)\over (4a^2+x^2)^2}={\pi\over (4a)^3}\tag1$$

We can start to decompose $(1)$ to...

$$\int_{0}^{\infty}\mathrm dx{1\over (4a^2+x^2)^2}-\int_{0}^{\infty}\mathrm dx{\cos^2\left({a\over x}\right)\over (4a^2+x^2)^2}\tag2$$

$$\int_{0}^{\infty}\mathrm dx{1\over (4a^2+x^2)^2}-{1\over 2}\int_{0}^{\infty}\mathrm dx{1\over (4a^2+x^2)^2}-{1\over 2}\int_{0}^{\infty}\mathrm dx{\cos\left({2a\over x}\right)\over (4a^2+x^2)^2}\tag3$$

$${1\over 2}\int_{0}^{\infty}\mathrm dx{1\over (4a^2+x^2)^2}-{1\over 2}\int_{0}^{\infty}\mathrm dx{\cos\left({2a\over x}\right)\over (4a^2+x^2)^2}\tag4$$

So far...
 
Mathematics news on Phys.org
Hi, Tony.

Your work looks good so far. Next, you can use a $u$-substitution to show that
$$\int_{0}^{\infty}\frac{\cos\left(\frac{2a}{x}\right)}{(4a^{2}+x^{2})^{2}}dx=\frac{1}{(2a)^{3}}\int_{0}^{\infty}\frac{x^{2}\cos (x)}{(x^{2}+1)^{2}}dx.$$
The idea is to now notice that the two integrals in (4) --i.e.,
$$\int_{0}^{\infty}\frac{1}{(4a^{2}+x^{2})^{2}}dx\qquad\text{and}\qquad\int_{0}^{\infty}\frac{x^{2}\cos (x)}{(x^{2}+1)^{2}}dx$$
-- are even functions of $x$, so can be expressed as
$$\frac{1}{2}\int_{-\infty}^{\infty}\frac{1}{(4a^{2}+x^{2})^{2}}dx\qquad\text{and}\qquad\frac{1}{2}\int_{-\infty}^{\infty}\frac{x^{2}\cos (x)}{(x^{2}+1)^{2}}dx.$$
Now use the method of contour integration on these integrals to obtain the desired result.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top