A harmonic function in a region is zero on an open portion of the boundary, and its normal derivative is also zero on the same part, and it is continuously differentiable on the boundary. I have to show that the function is zero everywhere, but I have no idea how. I have tried this for hours and hours, and haven't come up with anything useful. The best answer I've had so far involves the Cauchy Kovelevskaya theorem, but that was shown to be flawed. Can anyone help? This is very difficult..(adsbygoogle = window.adsbygoogle || []).push({});

I'm pretty sure this implies the gradient is zero on the boundary, is there anything I can possible do with that?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: A Harmonic Function is Zero on an open portion of the boundary, help!

**Physics Forums | Science Articles, Homework Help, Discussion**