Undergrad Solving a Tricky Nonlinear Equation System: A Quest for Closed Form Solutions

Click For Summary
The discussion revolves around finding a closed-form solution for the nonlinear equation system defined by x² - y² = 5 and x + y = xy, which leads to a quartic equation: x^4 - 2x^3 + 5x^2 - 10x + 5 = 0. Participants note that there are no integer or rational solutions, and the quartic has two real roots and a pair of complex-conjugate roots. One contributor suggests using Wolfram Alpha for easier root calculations, while another points out potential algebraic errors in the formulation of the quartic. The general consensus is that solving quartic equations can be complex and often results in non-intuitive roots.
n7imo
Messages
7
Reaction score
2
I'm trying to find a closed form (an algebraic solution) for the following system:

x² - y² = 5
x + y = xy

It's a bit tricky but I manage to end up with the quartic equation:
x^4 - 2x^3 + 5x^2 -10x + 5 =0
And this is where I get stuck looking for a closed form root.
Any suggestion would be appreciated
 
Mathematics news on Phys.org
trial and error of synthetic division.
 
n7imo said:
I'm trying to find a closed form (an algebraic solution) for the following system:

x² - y² = 5
x + y = xy

It's a bit tricky but I manage to end up with the quartic equation:
x^4 - 2x^3 + 5x^2 -10x + 5 =0
And this is where I get stuck looking for a closed form root.
Any suggestion would be appreciated
You won't find any integer or rational solutions. The general solution to a fourth degree equation is pretty daunting.

https://en.wikipedia.org/wiki/Quartic_function

This particular equation has two real and a pair of complex-conjugate roots.

BTW, I checked your algebra in reducing your system of equations to one equation in x. I think you have some mistakes there, since I don't obtain your particular quartic equation.

In any event, the resulting quartic still has two real and a pair of complex-conjugate solutions, none of which are nice integers or rationals.

I used Wolfram Alpha to solve for the roots. It's much easier than anything else.
 
  • Like
Likes n7imo
SteamKing said:
You won't find any integer or rational solutions. The general solution to a fourth degree equation is pretty daunting.

https://en.wikipedia.org/wiki/Quartic_function

This particular equation has two real and a pair of complex-conjugate roots.

BTW, I checked your algebra in reducing your system of equations to one equation in x. I think you have some mistakes there, since I don't obtain your particular quartic equation.

In any event, the resulting quartic still has two real and a pair of complex-conjugate solutions, none of which are nice integers or rationals.

I used Wolfram Alpha to solve for the roots. It's much easier than anything else.

Indeed, the right resulting quartic equation is x^4 - 2x^3 - 5x^2 -10x - 5 =0. I used Cardano and Lagrange method to find the real roots, but their form is very ugly.
Actually I got this equation while trying to solve a simple geometrical problem. I'll post it today on a new thread, I'm interested in finding a simpler method to solving it since mine leads to a quartic equation.

Thanks for the contribution.
 
Good morning I have been refreshing my memory about Leibniz differentiation of integrals and found some useful videos from digital-university.org on YouTube. Although the audio quality is poor and the speaker proceeds a bit slowly, the explanations and processes are clear. However, it seems that one video in the Leibniz rule series is missing. While the videos are still present on YouTube, the referring website no longer exists but is preserved on the internet archive...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
10K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K