A normal distribution problem, AS level, on tyres Need help in the last part.

AI Thread Summary
The discussion revolves around a problem involving the normal distribution of tyre pressures, where 80% of tyres must fall within specified safety limits around a mean of 1.9 bars. The key issue is the calculation of the safety limits, with participants noting discrepancies between their answers and the provided solution. The correct approach involves recognizing that the 80% probability is centered around the mean, requiring the use of the Z-score corresponding to the tails of the distribution. The correct Z-value for this scenario is approximately ±1.28155, leading to a calculated b value of 0.192 when using the standard deviation of 0.15. Understanding the distribution's symmetry and applying the invNorm function correctly is essential for solving the problem accurately.
mutineer123
Messages
93
Reaction score
0

Homework Statement


http://www.xtremepapers.com/CIE/International%20A%20And%20AS%20Level/9709%20-%20Mathematics/9709_s05_qp_6.pdf

question no. 6 part ii (Safety regulations state that the pressures must be between 1.9 − b bars and 1.9 + b bars. It is
known that 80% of tyres are within these safety limits. Find the safety limits)

My answer is not matching anywhere near the right answer (http://www.xtremepapers.com/CIE/International%20A%20And%20AS%20Level/9709%20-%20Mathematics/9709_s05_ms_6.pdf)




Homework Equations





The Attempt at a Solution



I used .8 as my probability for which the Z value is .842
Then I standardised my X values to Z, so i got P( -b/0.15< Z < b/.15) =0.8

Computing that i got .06315 as my b value.


Where is the answer sheet getting ± 1.282 from?
 
Physics news on Phys.org
Your probability is 0.80, but remember, this is the area in the middle, not from one end of the normal distribution curve.

Hint: Your 80% is centered around 1.9, so what are the probabilities of each end that is NOT within the safety limits. After that, all you need is the invNorm function on your calculator.

EDIT: Woah, on second thought, I'm not sure what method you and the answer sheet use. Maybe my way isn't the way you were taught. However, I know for sure it works.
 
tal444 said:
Your probability is 0.80, but remember, this is the area in the middle, not from one end of the normal distribution curve.

Hint: Your 80% is centered around 1.9, so what are the probabilities of each end that is NOT within the safety limits. After that, all you need is the invNorm function on your calculator.

EDIT: Woah, on second thought, I'm not sure what method you and the answer sheet use. Maybe my way isn't the way you were taught. However, I know for sure it works.

Yeah I don't know the method with the "invNorm function".
Regarding the hint "Your 80% is centered around 1.9", yes i have taken that into account. Since the rane as i stated was -b/0.15< Z < b/.15. I first formed an equation for the probability where Z< b/0.15. Then I formed a probability of Z< -b/0.15. Now I deduct the 2 probabilities(their equations actually) to get the actual probability, the resultant equation in b(which like you said is centered) Now this resultant equation is 0.8. So I solve for b. But apparently it is wrong.
 
mutineer123 said:

Homework Statement


http://www.xtremepapers.com/CIE/International%20A%20And%20AS%20Level/9709%20-%20Mathematics/9709_s05_qp_6.pdf

question no. 6 part ii (Safety regulations state that the pressures must be between 1.9 − b bars and 1.9 + b bars. It is
known that 80% of tyres are within these safety limits. Find the safety limits)

My answer is not matching anywhere near the right answer (http://www.xtremepapers.com/CIE/International%20A%20And%20AS%20Level/9709%20-%20Mathematics/9709_s05_ms_6.pdf)


Homework Equations



The Attempt at a Solution



I used .8 as my probability for which the Z value is .842
Then I standardised my X values to Z, so i got P( -b/0.15< Z < b/.15) =0.8

Computing that i got .06315 as my b value.


Where is the answer sheet getting ± 1.282 from?


You need 10% probability of {Z < -zc} and 10% probability of {Z > zc}, so zc = 1.28155. Thus, b/0.15 = zc = 1.28155, so b = 0.192.

RGV
 
Ray Vickson said:
You need 10% probability of {Z < -zc} and 10% probability of {Z > zc}, so zc = 1.28155. Thus, b/0.15 = zc = 1.28155, so b = 0.192.

RGV
Okay, so you're breaking up the inequality into two inequalities. smart. Thank you!
 
Last edited:
Back
Top