- #1

- 7

- 0

if lebesgue integral of f^2 over an interval equal 0, must f=0 a.e on that interval?

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter pswongaa
- Start date

- #1

- 7

- 0

if lebesgue integral of f^2 over an interval equal 0, must f=0 a.e on that interval?

- #2

- 342

- 51

- #3

- 15,415

- 687

What negative parts, R136a1? He's integrating f(x)

Is f a function that maps reals to reals, or something else?if lebesgue integral of f^2 over an interval equal 0, must f=0 a.e on that interval?

- #4

- 342

- 51

Oh god. Never mind my reply.

- #5

- 38

- 5

Specifically, since [itex]f^2=|f^2|[/itex], this gives [itex]f^2=0[/itex] a.e., and hence [itex]f=0[/itex] a.e.

- #6

- 15,415

- 687

- #7

- 38

- 5

- #8

- 38

- 5

proof:

Define [itex]A=\{x\in X: g(x)≠0\}[/itex]. For all naturals n, define [itex]A_n=\{x\in X: |g(x)|>\frac{1}{n}\}[/itex].

[itex]\frac{1}{n}μ(A_n)=∫\frac{1}{n}x_{A_n}dμ≤∫|g|dμ=0[/itex], so [itex]μ(A_n)=0[/itex] for all n.

Then [itex]μ(A)=μ(\bigcup _{n=1}^∞A_n)≤\sum _{n=1}^∞μ(A_n)=0\implies μ(A)=0[/itex], as desired.

Share: