renormalize said:
Your assertion here is simply false. If a metric-compatible connection ##\Gamma## could somehow lead to a path-dependent metric tensor ##g##, don't you think that fact would rate at least a mention in every textbook on general relativity? Have you made any attempt to calculate this yourself? It's not hard to do for infinitesimal transport, as I now demonstrate.
}\right)\tag{7}$$This difference accumulates to ##\Sigma_{i}\delta_{P_{i}}V## as ##V## is parallel-transported along multiple, linked infinitesimal displacements. If those displacements form a closed path such as a parallelogram, it’s well-known that ##\Sigma_{i}\delta_{P_{i}}V\propto RVdA##, where ##R## is the curvature tensor and ##dA## is the infinitesimal area enclosed by the path. Parallel transport of a vector ##V## between any two points in curved spacetime does indeed depend on the particular path linking those points. This fact evidently motivates your claim that the metric tensor itself is similarly path-dependent.
The upshot is: the metric ##g## is never path-dependent for an any connection ##\Gamma## that it is compatible with that metric (##\nabla_{\sigma}g^{\mu\nu}##=0).
Thanks!
So at first we all acknowledge that just as Sean Carroll pointed the parallel propagator ##P(x,x_0)## can solve the parallel transport equation. then if the curvature of the connection is not zero, the parallel propagator ##P(x,x_0)## is path dependent,
it is just because this that I try to find out if there exist connections which can make the movement of a metric is path dependent, But if you only start from a metric field, because a field just implicitly means that the change of the metric is path independent. so if you demand that ##(8)=(9)##, it will put some restrictions on the choose of the connection.
So I start from parallel propagator generated with an arbitrary connection, and the metric can be expressed as: ##g(x)=P(x,x_0)g(x_0)P^T(x,x_0)##, conbine with ##\partial_\mu P(x,x_0)=\gamma_\mu P(x,x_0)##. we can get:
$$\partial_\rho g(x)= \partial_\rho P(x,x_0)g(x_0)P^T(x,x_0)+P(x,x_0)g(x_0)\partial_\rho P^T(x,x_0)$$
$$=\gamma_\rho g(x)+(\gamma_\rho g(x))^T$$
This is just the metric compatibility equation. So ##\gamma_\mu## is compatible with metric ##g(x)##. because the parallel propagator ##P(x,x_0)## is possibly path dependent, so why the metric defined with ##P(x,x_0)## can not be path dependent.
I also can give an example from which we can get a strange result. If a connection is defined in such a way: ##\gamma_\mu= \partial_\mu G(x)G^{-1}(x)## ,(##G(x)## is an invertible matrix function ) , then an easy calculation can reveal that the curvature of ##\gamma_\mu## is zero. and the parallel propagator is very simple ##P(x,x_0)=G(x)G^{-1}(x_0)##, it is path independent. so we can get a metric field:
$$g(x)=G(x)G^{-1}(x_0)g(x_0)(G^{-1})^T(x_0)G^T(x)$$
it obviously is not always a flat metric. so it seems that there are many non-flat metric fields who is compatible with a zero curvature connection. This result seems to be very strange in GR. but I can not find any problem in the calculations, So where is the problem?