A quite delicious inequality problem

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $2^{2\sqrt{3}}>10$.
 
Mathematics news on Phys.org
we have $3 > \frac{25}{9}$
or $\sqrt{3} > \frac{5}{3}$

hence $2^{2\sqrt{3}} > 2^{2*\frac{5}{3}}\cdots(1)$

Now $2^{2*\frac{5}{3}} =2^{\frac{10}{3}}= \sqrt[3]{2^{10}}= \sqrt[3]{1024}> 10\cdots(2) $

from (1) and (2) we get above
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K