MHB A quite delicious inequality problem

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $2^{2\sqrt{3}}>10$.
 
Mathematics news on Phys.org
we have $3 > \frac{25}{9}$
or $\sqrt{3} > \frac{5}{3}$

hence $2^{2\sqrt{3}} > 2^{2*\frac{5}{3}}\cdots(1)$

Now $2^{2*\frac{5}{3}} =2^{\frac{10}{3}}= \sqrt[3]{2^{10}}= \sqrt[3]{1024}> 10\cdots(2) $

from (1) and (2) we get above
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
969
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K